
BOLT BERANEK AND NEWMAN INC CANOGA PARK CA
DEVELOPMENT AND VALIDATION OF SHIPBOARD NOISE EXPOSURE DATA ACQ--ETC(U)
NOV 81 B A KUGLER, C H HANSEN, A 6 PIERSOL NO0014-78-C-0408
BBN-4735 AD-A115 272 UNCLASSIFIED



# AD A 1 1 5 2 7 2

# **DISCLAIMER NOTICE**

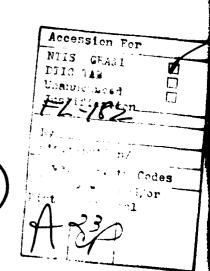
THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

BBM Report No. 4735

DEVELOPMENT AND VALIDATION OF SHIPBOARD NOISE EXPOSURE DATA ACQUISITION PROCEDURES

B. Andrew Kugler Colin H. Hansen Allan G. Piersol

November 5, 1981


"The Research reported here has been supported under the Office of Naval Research Contract NGD14-78-C-0408 with funds provided by the Naval Medical Research Development Command".

#### Submitted to:

Cdr. W. M. Parsons
Naval Medical Research and Development Center
Code 47
National Naval Medical Center
Bethesda, Maryland 20014

#### Submitted by:

Bolt Beranek and Newman Inc. 21120 Vanowen Street Canoga Park, California 91303



DOPY

INSPECTED

#### **EXECUTIVE SUMMARY**

This study is concerned with the development and validation of a shipboard noise exposure data acquisition procedure. This procedure represents a first step in the overall framework for a Navy Noise Exposure Data Management System which is discussed in the text. The immediate purpose of this data collection process is to provide for standardized measurement techniques that may be used by various Navy units concerned with occupational noise and hearing conservation. This noise data base, when computerized, can be used in concert with the shipboard noise exposure model developed in an earlier study [1] to assess the magnitude of the overexposure problem on individual ships, ship classes and ultimately the entire fleet. The benefits of this approach are guidance in the development of hearing conservation and educational programs, and in the assessment of noise control priorities in the fleet. Future extensions of the data management system include:

- 1. The assessment of audiometric data together with the noise exposure data as a function of personnel rates and,
- 2. Extension of the system capabilities to other occupational hazards such as heat stress.

The results of this study, which was conducted on 12 ships of the FF-1052 (Knox) Class, showed that standardized measurement techniques consistent with the requirements of the data base can be successfully collected by Navy personnel (Environmental Preventative Medical Units). Both the time required to perform each survey and the quality of the data collected by the EPMUs meet with the original goals of the study.

The validation of the data base was conducted based on the analysis of the "auxiliary steaming" operational mode of 12 ships. Noise exposures for various engineering rates were computed using the analytic model and compared with an independent data set collected using dosimetry. The results of direct comparisons show substantial discrepancies. These are due mostly to a lack of consistent definition in the personnel assignment data and the proximity of the calculated noise exposures to the threshold established by the BUMED noise standard. In retrospect, the selection of the "auxiliary steaming" operational mode was unfortunate in the validation effort. It is believed that comparisons for an "underway" operational mode would yield significantly more consistent results.

It is recommended that a limited validation of the "underway" mode be conducted. Furthermore, it is recommended that the data base be computerized, at least for the FF-1052 (Knox) Class and that all EPMUs utilize the data acquisition procedures when surveying this class.

## TABLE OF CONTENTS

| EXEC | UTIVE | SUMMARY                                           | Page |
|------|-------|---------------------------------------------------|------|
| 1.0  | INTR  | ODUCTION                                          | 1-1  |
|      | 1.1   | Historical Review                                 | 1-1  |
|      |       | Program Objectives                                | 1-2  |
|      |       | Program Constraints                               | 1-3  |
|      |       | Report Organization                               | 1-3  |
| 2.0  | THE ! | NOISE EXPOSURE DATA MANAGEMENT SYSTEM             | 2-1  |
|      | 2.1   | Background                                        | 2-1  |
|      | 2.2   | The Shipboard Occupational Noise Exposure Problem | 2-2  |
|      | 2.3   | Elements of the Noise Exposure                    |      |
|      |       | Data Management System                            | 2-7  |
| 3.0  | DATA  | ACQUISITION PROCEDURES AND MODEL VALIDATION       | 3-1  |
|      | 3.1   | Data Input Requirements                           | 3-1  |
|      |       | 3.1.1 Selection of Ship Class                     | 3-1  |
|      |       | 3.1.2 Selection of the Ship Operational Mode      | 3-1  |
|      |       | 3.1.3 Number of Ship Surveys Required             | 3-2  |
|      | 3.2   | EPMU Procedures and Capabilities                  | 3-2  |
|      | 3.3   | Development of Data Collection Procedures         | 3-4  |
|      |       | 3.3.1 Noise Survey Forms                          | 3-4  |
|      |       | 3.3.1.1 General Information                       | 3-5  |
|      |       | 3.3.1.2 Operating Conditions                      | 3-8  |
|      |       | 3.3.1.3 Sound Level Data                          | 3-8  |
|      |       | 3.3.1.4 Personnel Assignment Data                 | 3-9  |
|      |       | 3.3.2 Survey Methodology                          | 3-10 |
|      |       | 3.3.3 Special Study Requirements                  | 3-10 |
|      | 3.4   | Experimental Validation of the Data Base          | 3_11 |

# TABLE OF CONTENTS (continued)

|     |      |                                                | Page |
|-----|------|------------------------------------------------|------|
|     | 3.5  | Field Data Collection                          | 3-11 |
|     |      | 3.5.1 EPMU Briefings                           | 3-12 |
|     |      | 3.5.2 Data Collection Problems and Time Delays | 3-12 |
|     |      | 3.5.3 The Dosimeter Measurements               | 3-13 |
|     |      | 3.5.4 Summary of Ships Surveyed                | 3-14 |
|     |      | 3.5.5 Debriefing of EPMUs                      | 3–15 |
| 4.0 | SURV | YEY RESULTS                                    | 4-1  |
|     | 4.1  | Introduction                                   | 4-1  |
|     | 4.2  | Summary of Survey Data                         | 4-1  |
|     |      | 4.2.1 Sound Level Data                         | 4-1  |
|     |      | 4.2.2 Personnel Assignment Data                | 4-11 |
|     |      | 4.2.3 Dosimeter Data                           | 4-14 |
|     | 4.3  | Noise Exposure Results                         | 4-18 |
|     |      | 4.3.1 Personnel Noise Exposure Results         |      |
|     |      | Using Individual Location Noise Data           | 4-20 |
|     |      | 4.3.1.1 Individual Personnel                   |      |
|     |      | Exposure Results                               | 4-20 |
|     |      | 4.3.1.2 Personnel Noise Exposure               |      |
|     |      | Averaged by Grade                              | 4-20 |
|     |      | 4.3.2 Personnel Noise Exposure Results         |      |
|     |      | Using Individual Location Noise Data           |      |
|     |      | Averaged over the 12 Sample Ships              |      |
|     |      | for Each Location                              | 4-22 |
|     |      | 4.3.3 Personnel Noise Exposure Results         |      |
|     |      | Using Sub-Area Averages for the                |      |
|     |      | Noise Level Data                               | 4-22 |
|     |      | 4.3.3.1 Individual Personnel                   |      |
|     |      | Exposure Results                               | 4-25 |
|     |      | 4.3.3.2 Grade Average Personnel                |      |
|     |      | Exposure Results                               | 4-25 |

# TABLE OF CONTENTS (continued)

|       |        |                                                | Page  |
|-------|--------|------------------------------------------------|-------|
|       |        | 4.3.4 Personnel Noise Exposure Results         |       |
|       |        | Using Noise Data Averaged Over                 |       |
|       |        | Sub-Areas and All 12 Ships                     | 4-25  |
|       |        | 4.3.5 Personnel Noise Exposure Results         |       |
|       |        | Using General Area Averages for the            |       |
|       |        | Noise Level Data                               | 4-28  |
|       |        | 4.3.5.1 Individual Personnel                   |       |
|       |        | Exposure Results                               | 4-29  |
|       |        | 4.3.5.2 Grade Average Personnel                |       |
|       |        | Exposure Results                               | 4-29  |
|       |        | 4.3.6 Personnel Noise Exposure Results         |       |
|       |        | Using Noise Levels Averaged over               |       |
|       |        | General Areas and All 12 Ships                 | 4-29  |
|       | 4.4    | Summary of Noise Exposure Results              | 4-32  |
|       | 4.5    | Comparison of Dosimetry Data with              |       |
|       |        | Calculated Noise Exposure Data                 | 4-40  |
| 5.0   | STRUC  | TURE OF SHIPBOARD NOISE DATA MANAGEMENT SYSTEM | 5-1   |
|       | 5.1    | Summary of Results and Model Limitations       | 5-1   |
|       | 5.2    | Recommendations for Further Validations        | 5-2   |
|       | 5.3    | Conclusions and Recommendations                | 5-4   |
| 6.0   | REFE   | RENCES                                         | 6-1   |
| APPEN | IDIX A | The Occupational Noise Exposure & Assessment   | Model |
|       | IDIX E |                                                |       |
| APPEN | IDIX ( | Shipboard Sound Survey Procedure               |       |
| APPEN | IDIX I | •                                              |       |
| APPEN | NDIX E | _                                              |       |
|       |        | Ship Using Noise Levels Measured at            |       |
|       |        | Individual Locations                           |       |

## TABLE OF CONTENTS (continued)

| APPENDIX F | Grade Average Noise Exposure Results for      |
|------------|-----------------------------------------------|
|            | Each Ship Using Noise Levels Measured at      |
|            | Individual Locations                          |
| APPENDIX G | Individual Noise Exposure Results for All     |
|            | 12 Ships Using Individual Location Noise      |
|            | Level Data Averaged over All 12 Ships         |
| APPENDIX H | Individual Noise Exposure Results for Each    |
|            | Ship Using Sub-Area Average Noise Levels      |
| APPENDIX I | Grade Average Noise Exposure Results for Each |
|            | Ship Using Sub-Area Average Noise Levels      |
| APPENDIX J | Individual Noise Exposure Results for All     |
|            | 12 Ships Using Sub-Area Averages over All     |
|            | 12 Ships for the Noise Level Data             |
| APPENDIX K | Individual Noise Exposure Results for Each    |
|            | Ship Using General Area Average Noise Levels  |
| APPENDIX L | Grade Average Noise Exposure Results for Each |
|            | Ship Using General Area Average Noise Levels  |
| APPENDIX M | Individual Noise Exposure Results for All     |
|            | 12 Ships Using General Area Average over All  |
|            | 12 Ships for the Noise Level Data             |
| APPENDIX N | Dosimeter and Calculated Equivalent Sound     |
|            | Level Data Comparisons                        |

## LIST OF TABLES

| <u>Table</u> |                                                    | Page |
|--------------|----------------------------------------------------|------|
| 4-1          | Summary of FF-1052 (Knox) Class Ships              |      |
|              | Surveyed by EPMU Units                             | 4-2  |
| 4-2          | Ship Sound Level Data - Auxilary Steaming          | 4-4  |
| 4-3          | Results of Analysis of Variance Studies of         |      |
|              | Ship Noise Measurements                            | 4-8  |
| 4-4          | Personnel Assignment Data Variability              | 4-13 |
| 4-4          | Equivalent Sound Levels from Dosimeter Data        | 4-16 |
| 4-6          | Standard Deviations of Equivalent Sound Levels     | 4-17 |
| 4-7          | Individual Personnel Daily Noise Doses             |      |
|              | Greater than 1.0 Using Sound Levels                |      |
|              | at Individual Locations                            | 4-21 |
| 4-8          | Grade Average Personnel Noise Exposure and         |      |
|              | Impact for All 12 Ships: Sound Levels Averaged     |      |
|              | at Individual Locations over All 12 Ships          | 4-23 |
| 4-9          | Sub-Areas Used for Noise Level Averages            | 4-24 |
| 4-10         | Individual Personnel Daily Noise Doses Greater     |      |
|              | Than 1.0, Sound Levels Averaged over Sub-Areas     | 4-26 |
| 4-11         | Personnel Noise Exposure and Impact Grade Averages |      |
|              | for All 12 Ships: Sound Levels Averaged over       |      |
|              | Sub-Areas and All 12 Ships                         | 4-27 |
| 4-12         | General Areas Used for Noise Level Averages        | 4-28 |
| 4-13         | Individual Personnel Daily Noise Doses             |      |
|              | Greater Than 1.0, Sound Levels Averaged            |      |
|              | Over General Areas                                 | 4-30 |
| 4-14         | Personnel Noise Exposure and Impact Grade          |      |
|              | Averages for All 12 Ships: Sound Levels            |      |
|              | Averaged over General Areas and All 12 Ships       | 4-31 |
| 4-15         | Number of Personnel Overexposed Expressed as a     |      |
|              | Percentage of the Total Number Surveyed;           |      |
|              | Individual Basis, No Noise Level Averaging         |      |
|              | Over Ships                                         | 4-33 |

# LIST OF TABLES (Continued)

| <u>Table</u> | •                                                                                                                                  | Page |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|------|
| 4-15         | Number of Personnel Overexposed Expressed as a Percentage of the Total Number Surveyed; Individual Basis, No Noise Level Averaging |      |
|              | Over Ships                                                                                                                         | 4-33 |
| 4-16         | Number of Personnel Overexposed Expressed as a Percentage of the Total Number Surveyed on an                                       |      |
|              | Individual Basis Location Noise Levels Averaged over All 12 Ships                                                                  | 4-34 |
| 4-17         | Coefficients of Variation for ESL Values                                                                                           |      |
|              | for the Sample Ships                                                                                                               | 4-36 |
| 4-18         | Minimum Number of Ships To Be Sampled for $\pm 3$ dBA, $\pm 2$ dBA and $\pm 1$ dBA Accuracy in the                                 |      |
|              | Average ESL Computation                                                                                                            | 4-37 |
| 4-19         | Coefficients of Variation for ESL Values for                                                                                       |      |
|              | Personnel in Each of the 12 Sample Ships                                                                                           | 4-39 |
| 4-20         | Minimum Number of Personnel To Be Sampled on                                                                                       |      |
|              | Each Ship for $\pm 3$ dBA, $\pm 2$ dBA and $\pm 1$ dBA                                                                             |      |
|              | Accuracy in the Average ESL Computation                                                                                            | 4-40 |
| 4-21         | Summary of Equivalent Sound Level Data Comparisons                                                                                 | 4-44 |

# LIST OF FIGURES

| Figure |                                           | Page |
|--------|-------------------------------------------|------|
| 2.1    | Schematic of the Shipboard Noise Exposure |      |
|        | Data Management System Elements           | 2-5  |
| 2.2    | Noise Exposure Data Management System and |      |
|        | Possible Extension Elements               | 2-8  |
| 3.1    | Illustration of the Sound Survey Form     | 3-6  |

#### 1.0 INTRODUCTION

The research reported here has been supported under the Office of Naval Research Contract N0014-78-C-0408 with funds provided by the Naval Medical Research Development Command.

#### 1.1 Historical Review

The U.S. Navy has been concerned for many years with the noise environment to which its personnel are exposed on-board ships and at Navy ground installations. To that effect, various shipboard noise standards, like the BUMED INST 6260.6 series, and more recently, the DOD INST. 6055.3 have been promulgated. The U.S. Navy Medical Department also performs audiometric examinations on personnel entering the Navy and then at subsequent stages of their duty. The objectives of the noise standard and the hearing examinations are the prevention and early identification of occupationally induced hearing loss.

Measurements conducted on-board ships, and especially in engineering spaces, indicate that the high noise levels present may potentially result in substantial hearing loss and subsequent compensation. Although a significant effort has been expended over the last several years by the Navy to measure and control shipboard generated noise, no personnel noise exposure data collection and evaluation system is currently available. Noise exposure data are rarely computed since this involves a relatively complex process, especially in shipboard environments. The complexities are due to the varied operational characteristics of ships (and thus of the machinery responsible for the noise) and the difference in personnel work assignments for different ship operational modes.

Furthermore, audiometric data are normally restricted to the individual's medical record and no data concerning correlation between high noise exposure occupations and hearing loss trends are available.

#### 1.2 Program Objectives

The need for a noise data base system clearly exists. The method of solution suggested here is the development of a shipboard noise exposure data management system that may be used by the Navy, at all levels of enforcement and hearing conservation planning, to monitor and quantify the noise exposure problem in the fleet.

A model that could serve as the central core for such a system has been previously developed under sponsorship of NAVMAT [1]\*. The objective of this first phase of the work reported herein is to develop and validate the data acquisition system to the model. Specifically, the main objectives of the program are:

- 1. To evaluate the Navy procedures and capabilities in the area of noise data collection,
- 2. To develop the methodology for the data acquisition system based on the Navy capabilities, and,
- 3. To validate the accuracy of the data acquisition system and the noise exposure model.

It should be noted that although the major emphasis of the proposed work is the description of the hearing loss hazard -- noise -- other occupational health hazards such as heat stress may also be approached in a similar manner.

Numbers in [] concern references listed at the end of this report.

<sup>\*</sup>The subject of occupational noise aboard ships has been addressed to some extent in a recently completed study entitled, "Occupational Noise Exposure on FF 1052 (Knox) and DD 963 (Spruance) Class Ships." This report which concerns itself only with the noise exposure in engineering spaces, points out the deficiencies of the present data acquisition system, and suggests a method for solution.

#### 1.3 Program Constraints

The pursuit of the above objectives was conducted under the following constraints:

- 1. The data acquisition procedures were designed around acoustic equipment currently available in the Navy.
- 2. The data acquisition supportive of this program was performed by the Navy Environmental Preventative Medicare
  Units EPMU in the course of their normal duties. To limit the time necessary for the surveys, only the In-Port operational condition (auxiliary steaming) was evaluated. Furthermore, only engineering personnel active in machinery spaces were included since these groups are believed to be exposed to the highest noise environment.

#### 1.4 Report Organization

This report is organized as follows: Section 2 discusses the broad outline of the data management system, its elements, the analytic model on which it is based and the specifics associated with the shipboard occupational noise exposure application. Section 3 discusses the development of the data acquisition procedures, the organization and the field data collection history. Section 4 presents the survey results, the analysis of the analytical model predictions and comparisons of the results with dosimetry measurements conducted to validate this methodology. Finally, Section 5 summarizes the results and limitations of this study and presents recommendations.

#### 2.0 THE NOISE EXPOSURE DATA MANAGEMENT SYSTEM

#### 2.1 Background

The fundamental objective of the Navy Hearing Conservation Program is the prevention of occupationally induced hearing loss. However, to date, no system exists for evaluating consistently the magnitude of the shipboard noise exposure problem, identifying hazardous occupations and identifying unsafe work areas.

Noise exposure rather than noise level is the critical quantity in hearing conservation. Noise exposure is the time integral of noise level over an individual's duration of exposure, calculated with an appropriate exchange rate between level and time. The critical point here is that noise exposure relates to an individual (or individuals performing the same job in specified locations), not solely to the noise levels in a particular space. Thus an important input to a noise exposure data base system is the identification of the time spent at various locations by individuals having a certain job classification. Note that these data are fundamental to any time and magnitude dependent environmental hazard such as noise, heat stress or airborne toxic agents.

The lack of noise exposure data found in the previous study [1] is not surprising since the computation of noise exposure is not a simple process. Briefly, this process involves the understanding of the relationship between two variables: (1) the noise hazard and how it varies from location to location on the ship, and (2) the personnel work assignment or duty as a function of location and time spent. The situation is further complicated by the various operational modes of the ship which effect both noise hazard and personnel assignment.

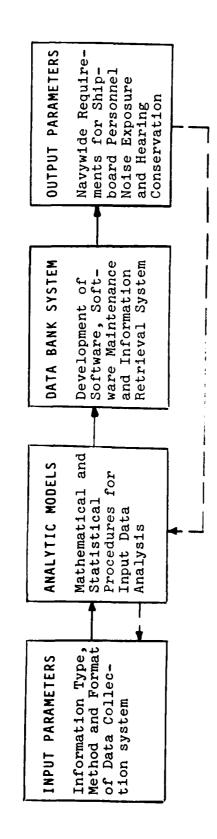
Before we discuss the specific questions investigated in this study, a general overview of the occupational noise exposure data management system as it is envisioned at this time is in order.

Why is there a need for a noise exposure data management system? In addition to the ability to evaluate the noise exposure accurately, the system provides for a standardized method for acquiring and compiling exposure related noise data which in turn permits the pooling of information from various sources for an overall Navy analysis. This approach also permits the assessment of not only individual ships but ship classes, changes in the ship class as a function of time and reconditioning efforts, comparisons of a ship to its class, and, by analyzing the input information, the identification of the ship spaces (or locations) which contribute most to the overexposure problem. However, the most persuasive argument for the data management program is the ability of the system to bring together, for the first time, shipboard noise exposure data and audiometric data. This last factor, when operational, will help the Navy to plan not only more effective hearing conservation programs, but also to develop the optimum strategy for noise control in present and future ship classes. general exposure data management system extends beyond the purely shipboard application and even beyond the occupational noise exposure application. The extensions to the basic model are summarized in Section 2.3. The application to the shipboard occupational noise problem and the specific development of the data acquisition procedures investigated in this study are discussed in Section 2.2.

#### 2.2 The Shipboard Occupational Noise Exposure Problem

The shipboard noise exposure and assessment model developed in the previous study [1] was formulated to evaluate the occupational noise problem in two ship classes. This model, which for completeness is repeated in Appendix A,\* can be extended to the entire fleet. The purpose of this study is to explore the acquisition problems associated with the data input needs of the model. That is, what type of data base is required to achieve outputs which are responsive to various Navy echelons? Can this input data be collected by Navy personnel? What is the accuracy that may be associated with this procedure?

The approach used to establish the data needs was to identify the type of results that are desired for a Navy-wide application. Some of these results are oriented around the local requirements where regional Environmental Preventative Medicine Units (EPMU) inspect an individual ship and advise the ship's C.O. of infractions and potential problems. Other results may be oriented towards the Headquarters level where evaluations of trends in ship classes, job categories, and hearing loss are desired. The basic capabilities of the system as envisioned presently are as follows:


- 1) To compute the noise exposure of shipboard personnel as prescribed by existing Navy Noise Standards.
- 2) To identify Navy personnel with excessive noise exposure based on the job classifications or duty.
- 3) To identify and classify shipboard spaces or locations which most contribute to the noise exposure problem and to provide for a method for rank-ordering these according to exposure.

<sup>\*</sup> The reader is encouraged to review the details of the model in Appendix A to better understand the following discussion and the dimensions of the problem.

- 4) To allow for the assessment of the benefit generated (reduction of noise exposure -- not noise level) by the introduction of specific noise controls on a given ship or class of ships.
- 5) To provide a method for the collection and analysis of audiometric data as a function of job description.
- 6) To allow the computation of noise exposure based on other than previously approved guidelines. For example, the exposure of job classifications over a typical 24-hour day for a number of ship operating modes over a year, or tour of duty, etc.

Based on the above discussions the basic elements of the ship noise exposure data management system are shown in Figure 2.1 as follows:

- 1) <u>Input parameters</u>. The input parameters are represented a description of the hazard (noise level), the description of the personnel work assignments for all ship operational modes, etc.
- 2) Analytic Models. The analytic models are represented by the mathematical and statistical relationships used to analyze the input data and arrive at the desired output parameters.
- 3) <u>Data Bank Systems</u>. The data bank system is represented by the software, hardware, software maintenance, and retrieval systems necessary to computerize the process.
- 4) Output Parameters. The output parameters are represented by the Navy-wide requirements for hearing conservation, planning, and shipboard noise abatement.



-

SCHEMATIC OF THE SHIPBOARD NOISE EXPOSURE DATA MANAGEMENT SYSTEM ELEMENTS FIGURE 2.1

As indicated in Figure 2.1, the input parameters, in terms of the data type, quantity, format and method of acquisition are defined, to some extent, by the desired output parameters. For example, a requirement to compute a 24-hour noise exposure would necessitate noise and personnel assignment data for the entire 24-hour period instead of only the work hours. Similarly, if year-to-year improvements or changes in noise exposure are to be assessed, the input data must reflect the date of acquisition and must be stored accordingly in the data base system.

Central to the success of a Navy shipboard noise exposure data management system is the method by which the data are collected. At the present time most of the personnel noise exposure evaluations are conducted by the regional EMPUs which are located at various major Navy centers in the US and abroad. The subject of the specific procedures that the EPMUs follow in the data acquisition process is discussed further in Section 3.

In general the EPMUs conduct regular inspections of ships in their region. In the case of noise their mission is to identify noisy locations above 85 dBA and in some cases the causes of excessive noise, and to advise the ship's C.O. of the ship's status. As will be shown later, although the EPMUs purpose is to inspect the ship for noise exposure, they limit their measurements to quantifying the noise levels at various ship locations. At the present time the EPMUs do not routinely translate these physical measurements into comprehensive descriptions of personnel noise exposure. It is the intent of this program, through the Noise Exposure Data Management System, to adapt the present EPMU data collection practices to fulfill the data input requirements that will allow the computation of noise exposure. One of the main objectives of the work reported herein is to demonstrate the practicality and validity of the input data acquisition process using present EPMU capabilities.

#### 2.3 Elements of the Noise Exposure Data Management System

The elements of the General Personnel Navy Exposure Data Management System and its possible extensions are shown in Figure 2.2. The matrix format is presented in terms of the four system elements discussed previously. Three of these elements, the input parameters, the analytic model, and the definition of the output parameters for the shipboard occupational noise exposure problem are the subject of the present work. Element number three which is concerned with the computerized version of the Shipboard Noise Exposure Model is not included in this phase and is discussed only in general.

The objective of the matrix presentation is to provide a picture of the possible extensions to the Shipboard Noise Exposure Data Management System which may be desired in terms of the output parameters and to show the interface that exists among the various elements of the system. For example, the extension of the Occupational Noise Exposure Assessment to watercraft and shore facilities is shown as a simple modification of the data collection procedures and an upgrade of the analytical model and software to account for the difference in the physical environment in that application. The resulting outputs will be identical to the shipboard application except that now job classifications and operational modes in watercraft and shore facilities will be considered.

The overall noise exposure application simply extends the capability of the system to account for the noise exposure perceived in other than working environments. This application is especially important in shipboard environments where the crew may be considered as a captive audience and the relief from high noise levels in other than work spaces is sometimes only minor. This application would allow the computation of a 24-hour day noise exposure parameter as a possible output. Current proposed

| APPLICATION<br>ELEMENTS                        | SHIPBOARD OCCUPAT. NOISE EXPOSURE                                                                                                                                                                                                                                                                      | EXTENSION TO WATERCRAFT/ SHORE FACILITIES                                                                  | OVERALL NOISE<br>EXPOSURE                                                                                                | AUDIOMETRY                                                                                                                                                                                  | SHIPBOARD/SHORE<br>FACIL. MACHINERY<br>NOISE CONTROL<br>REQUIREMENTS                                                                   | PERSONNEL EXPOSURE TO OTHER OCCUPAT. HAZARDS                                                                                                                                                                                   |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INPUT<br>PARAMETERS                            | ()<br>Noise Level and Work<br>Assignment Data Collec-<br>tion Procedures                                                                                                                                                                                                                               | Extension of Item 1 Procedures                                                                             | Moise Level and<br>Time Spent in<br>other than Work<br>Environments                                                      | Collection and Machinery Noise Screening Pro-Characteristics cedures for and Classifica-Audiometric Data tion Procedures                                                                    | (1) Machinery Noise Characteristics and Classifica- tion Procedures                                                                    | Physical Msmt. of<br>Hazard(s) in Ship-<br>board and Shore<br>Facil. Procedures                                                                                                                                                |
| ANALYTIC                                       | Occupational Noise<br>Exposure Computation<br>Model                                                                                                                                                                                                                                                    | 6<br>Extension of<br>Item 2 Model                                                                          | Extension of Items 2 or 6 to provide other time frame computation capability                                             | (14) Audiometric Data Analysis Model                                                                                                                                                        | (18) Noise Source Diagnostic and Evaluation Model                                                                                      | Extension of Items 2 or 6 to provide hazard computa- tional capability                                                                                                                                                         |
| DATA BANK, RETRIEVAL                           | 3<br>Software and Software<br>Maintenance Development                                                                                                                                                                                                                                                  | Extension of Item 3                                                                                        | Extension of Items 3 or 7                                                                                                | Software and Software Main-<br>tenance Devel-<br>opment                                                                                                                                     | (19) Software and Software Main- tenance Devel- opment                                                                                 | (3)<br>Extension of<br>Items 3 or 6                                                                                                                                                                                            |
| DEFINITION OF OUTPUT PARAMETERS (Type, Format) | • Noise Exposure by Job Classification • Change in Exposure by Operating Mode • Assessment of Ship/ Class Noise Exposure • Evaluation of Ship/ Class Compliance with Standard • Identification of Ship/ Class Year to Year Improvement/Degradation • Identification and Classification of Noisy Spaces | Extension of Extension of Item 4 to describe water- craft and shore facility occupa- tional noise exposure | Extension of Items 4 or 8 to provide: 24-Hour Exposure by Job Classification Yearly Noise Exposure by Job Classification | identification of Haz-<br>ardous Occu-<br>pations  Development of Hearing Loss Trends by Job Classification and Time of Service  Correlation between Noise Exposure and Hearing Loss Trends | Identification and Classification of cation of Major Noise Sources Based on Noise Exposure  Definition of Noise Reduction Requirements | Identification Extension of Items and Classifi- 4 or 8 to describe cation of other hazard(s) Major Noise occupational exposure Sources Based sure on Noise Expoture Definition of Noise Reduction Reguire- tion Reguire- ments |

NOISE EXPOSURE DATA MANAGEMENT SYSTEM AND POSSIBLE FIGURE 2.2

2-8

Land Branch

standards by the U.S. Coast Guard and by IMCO (International Maritime Organization) tend to suggest that the shipboard application problem in terms of hearing loss should be looked at on a 24-hour basis rather than only on the workday hours.

One important parameter of concern in the hearing conservation program which was mentioned before is the use of audiometric data to monitor the effects of the noise hazard. Which occupations are the most hazardous from the point of view of noise? At the present time the audiometric data collected is stored and used at the individual's level or command only. That is, the data, when available, are part of the individual's medical record and are not, to any extent, used on a Navy-wide basis to define hazardous occupations. This information, however, in concert with the noise exposure data could, and should be used, to formulate hearing conservation and education programs to evaluate and validate the long term effects of noise control actions and to define priorities in noise control efforts. The format of the shipboard noise exposure model lends itself to the storage of audiometric data along with the description of the individual's assignment. While it is not envisioned that individual histories can be monitored in this manner, statistical trends of job assignments can be easily derived as a function of length of duty, ship class, etc.

Of special interest, therefore, is the potential audiometry application of the data management system to monitor audiometric data for the same job classifications, compute hearing loss trends, and correlate hearing loss with noise exposure results for the same population groups. Note that the relationship between the audiometric model and the shipboard noise exposure model must be established so audiometric and noise data for the same population groups may be considered.

The analytical models for the shipboard-shore facility noise control and other occupational hazards (time and magnitude dependent) have already been developed in Reference 1. The only requirement for these applications to the system are the input data type and procedures which are necessary as shown in Figure 2.1.

Each one of the above application extensions to the basic shipboard Noise Exposure Data Management System is independent. Therefore a selection of one or more applications to be added to the system may be made in any desired sequence and at any time as the need arises.

#### 3.0 DATA ACQUISITION PROCEDURES AND MODEL VALIDATION

This section of the report presents the procedures developed for the collection of noise and personnel work assignment data. Also included is a description of the methodology used to validate the results of the model and the specifics of the data base required.

#### 3.1 Data Input Requirements

#### 3.1.1 Selection of Ship Class

As described in Appendix A the shipboard noise exposure model is based on the assumption that the steady state condition can be described for both the hazard (noise levels) and the operator duty (personnel assignment). To accomplish this, both the ship class and the ship operating mode has to be constant. The selection of the FF-1052 (Knox) Class was based on two considerations:

- (a) previous experience with this class which was investigated under a separate study [Ref. 1], and
- (b) the large number of vessels in this class operational in the fleet.

This last consideration was especially important since the availability of ships of the same class for the special surveys to be undertaken was of prime importance.

#### 3.1.2 Selection of the Ship Operational Mode

In order to maximize the use of the data base collected a single operational mode was selected. The selection of the "auxiliary steaming" operational mode meant that all measurements could be

performed while the ship was in port. Since the bulk of the data acquisition program was to be performed by the Environmental Preventative Medical Units (EPMU), this approach would limit the time required for the data collection process and control costs. It was estimated that each ship could be surveyed "in port" during an 8 to 12 hours period while a similar survey of "underway" operational mode would require a minimum of two days or more depending on the length of the trip. Furthermore this selection would preclude extensive travel by the EPMU personnel participating by choosing ships which were in the port where the units are based.

#### 3.1.3 Number of Ship Surveys Required

Based on the FF-1052 Class noise data collected in Reference 1, a preliminary assessment of the expected data variability (from space to space and from ship to ship) was made. This information was used to estimate the number of ships that would be required in order to provide a statistically significant sample for this program. The minimum number of independent sample ships required was found to be 12. Based on this requirement it was estimated that a period of 3-months would be sufficient to collect the field data.

#### 3.2 EPMU Procedures and Capabilities

At the onset of the program two regional EPMU units were selected to support the data acquisition program. These were

- 1. EPMU-2 based in Norfolk, Virginia, and
- 2. EPMU-5 based in San Diego, California.

With the assistance of BUMED the Commanding Officers of the two units were contacted and a general agreement to conduct the

<u>na na manda de la como e</u>

surveys was gained. As a first order of business an introductory visit to each unit was undertaken. The objective was to establish their capabilities in the area of noise and become familiar with the general procedures used by the units in the performance of noise surveys. It was also desired to determine the level of training and instrumentation available to these units since the objective of the data collection system was to design the methodology around existing procedures. The results of the initial visits can be summarized as follows:

- 1. EPMU units conduct noise surveys either in port or underway at the request of the ship's Commanding Officer.
- 2. These surveys are normally oriented around measurement in noisy ship's areas and in most cases involve surveys of the engineering spaces in question.
- 3. No Navy-wide coordinated system for noise data acquisition exists among the EPMU units. Each unit, over time, has developed their own procedures of how to conduct the survey and what data to collect.
- 4. In general noise levels are acquired only at locations where noise levels exceed 85 decibels. (Prior to DOD Instr. 6055.3 this cut-off was generally at 90 decibels.)
- 5. There are no standardized measurement locations at which levels are acquired. That is, although some consistency in the general procedure that each EPMU unit follows was found, the specific locations surveyed in each space and the number of measurements selected depends to a large extent on the individual conducting the survey. Also, the ship's operational conditions, although in most cases noted, is not uniform. Thus, while most of the available data are collected "underway", differences due to ship's speed are normally not taken into account. In general,

the tendency was to measure at locations where noise levels were the highest (worst condition).

- 6. Surveys were normally limited to noise measurements at one or more locations within the engineering spaces without regard as operator location or duration of exposure.
- 7. Equipment available to EPMU units is usually limited to Type 2 sound level meters.

#### 3.3 Development of Data Collection Procedures

This section describes the general process followed in the development of the Sound Survey Forms used during the survey and the procedures used to acquire the data.

#### 3.3.1 Noise Survey Forms

The main objective in the development of the Sound Survey Forms was to provide a standardized format for a data acquisition system that would be consistent with the information required in the shipboard noise exposure model (Ref. 1) and with the general procedures and capabilities of the EPMU units. With this in mind the Sound Survey Form in Appendix B has been developed. This form was developed for each one of the engineering spaces (or subspaces) of concern. A sample page is shown in Figure 3.1.

Figure 3.1 shows the form developed for the Engine Room-Lower Level. Similar forms have been developed for the Engine Room-Upper Level, Engine Room-Second Deck, Fire Room-Upper Level, Fire Room-Lower Level, Fire Room-Second Deck, Auxiliary Room #1-Lower Level, the Auxiliary Room #1-Upper Level, Auxiliary Room #2 and finally for the FD-Boiler Room 1A, FD-Boiler Room 1B and the After-Steering Space.

The front part of the form is sub-divided into four distinct areas. These are:

- 1. General information,
- 2. Operating conditions,
- 3. Sound level data,
- 4. Personnel assignment data.

The back of the form contains supportive information to the survey requirements identified in the front.

It should be noted that the general elements of this form are common to any ship class that may be surveyed. However, the details, especially those associated with the number of acoustic spaces identified, the selection of measurement locations and the machinery layout arrangements, are unique to the FF-1052 Class.

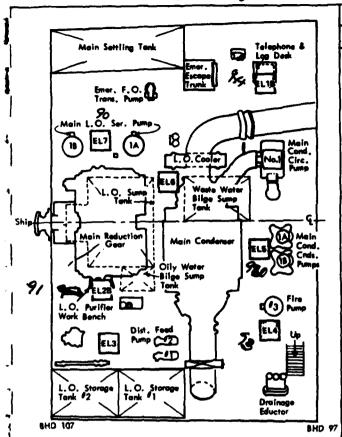
It is hoped that some version of a Sound Survey Form like the one suggested here will be adopted for all EPMU units and that comparable forms be developed for each ship class in the fleet.

#### 3.3.1.1 General Information

The general information part of the survey form contains the basic identification data for the ship surveyed. Such information as the ship class and the space designation are contained here as shown in Figure 3.1. The ship name, survey date, time of day and type of instrumentation used is also identified. This information is necessary to not only identify the ship but also to make the attached information useful in later analysis; for example, when this ship is compared to itself at future

FF1052 Class

# SOUND SURVEY FORM


Page 1 of 12

| \<br>\<br>\ | CODE         |                                                                                                       | GE      | NERAL IN                                         | FORMAT                                           | ION            |           | CODE                                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OI          | PERATIN     | IG CONDITIONS |
|-------------|--------------|-------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------|--------------------------------------------------|----------------|-----------|------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------|
|             |              | Ship's Class Space Surveyed Ship's Name Survey Date Time of Day Inspected by Meter Type Serial Number |         |                                                  |                                                  |                | Ope<br>(a | diness ©<br>rating Mo<br>) In-Port<br>) Underw |          | Cond. I Cond. III Cond. IV Cond. IV Cond. V Cond. V Cond. V Cond. V Cold Iron Cold Iro |             |             |               |
|             |              |                                                                                                       |         |                                                  |                                                  | so             | UND LE    | EVEL C                                         | AT       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |               |
|             | LOC.<br>CODE | MEAS.<br>LOC.                                                                                         | dBA     | INTER®                                           | co                                               | MMENTS         | •         | LOC.<br>CODE                                   | ME       | AS.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d8A         | INTER.      | COMMENTS      |
| 1           |              | EL1B                                                                                                  |         |                                                  |                                                  |                |           |                                                | EL       | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             | <del></del>   |
|             |              | EL2B                                                                                                  |         |                                                  |                                                  |                |           |                                                | EL       | .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |               |
|             |              | EL3                                                                                                   |         |                                                  |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
| -           |              | EL4                                                                                                   |         |                                                  |                                                  |                |           | ļ                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
| ا ۲         |              | EL5                                                                                                   |         |                                                  |                                                  | :              |           | ↓                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u> </u>    |               |
| ์<br>[      |              |                                                                                                       |         |                                                  | PI                                               | ERSON          | NEL AS    | SIGNM                                          | ENT      | r D/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATA         |             |               |
| \[ \]       | LOC.         | MEAS.                                                                                                 | BILLET  | RATE                                             | WEAR FROT.                                       | WATCH TO STAND | HRS./DA   | Y AT LO                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | cc          | MMENTS 9      |
|             |              |                                                                                                       |         | <del> </del>                                     | <del>                                     </del> | <u> </u>       |           |                                                | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
| ţ           |              |                                                                                                       |         | <b>†</b>                                         |                                                  |                |           |                                                | 寸        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             | ·             |
| ĺ           |              |                                                                                                       |         |                                                  |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
|             |              |                                                                                                       |         |                                                  |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
|             |              |                                                                                                       |         | <u> </u>                                         | ļ                                                |                | ļ         |                                                |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |               |
| ŀ           |              | <u> </u>                                                                                              |         |                                                  |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | . <u>-</u>  |               |
| -           | -,           | -                                                                                                     |         |                                                  | ļ                                                |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <del></del> |               |
| ł           |              | <b> </b>                                                                                              |         | <del></del>                                      |                                                  |                | -         |                                                | $\dashv$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             | <del></del>   |
| ł           |              |                                                                                                       |         | <del>                                     </del> |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
| Ì           |              | <u> </u>                                                                                              | ~-~     | <del>                                     </del> |                                                  |                |           |                                                | $\neg$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
| Ì           |              |                                                                                                       |         |                                                  |                                                  |                |           |                                                | $\Box$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
|             |              |                                                                                                       |         |                                                  |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
|             |              |                                                                                                       |         |                                                  |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |
|             |              |                                                                                                       |         |                                                  |                                                  |                |           |                                                | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···         |             |               |
| Ì           | ·<br>        |                                                                                                       | <u></u> | <del> </del>                                     |                                                  |                |           |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |             |               |
| - 1         |              | I                                                                                                     | ì       | 1                                                | 1                                                |                | 1 1       |                                                | - 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |               |

Figure 3.1 Illustration of the Sound Survey Form 3-6

W Y MARKET STORY OF THE STORY O

SPACE: Engine Rm. Lower Level



|      | MACHINERY LINE-UP (OPTIONAL)                                                                                                                                                                                                                                                                           |       |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| CODE | DESCRIPTION                                                                                                                                                                                                                                                                                            | ON(v) |  |  |  |
|      | Main Reduction Gear Main Condensate Pump 1A Main Condensate Pump 1B Fire Pump No. 3 Main Condensate Circulation Pump No. 1 Main L.O. Service Pump 1A Main L.O. Service Pump 1B L.O. Purifier No. 1 Distillate Feed Pump No. 1 Distillate Feed Pump No. 2 Drainage Eductor Emergency F.O. Transfer Pump |       |  |  |  |
|      |                                                                                                                                                                                                                                                                                                        |       |  |  |  |

## DEFINITION OF PERSONNEL RATES

| RATE  | RATE DESCRIPTION              | DIVISION |
|-------|-------------------------------|----------|
| MMC   | Machinist Mate - Chief        | A        |
| MM1   | Machinist Mate - 1st Class    | A        |
| MM2   | Machinist Mate - 2nd Class    | A        |
| MM3   | Machinist Mate - 3rd Class    | A        |
| MMFN  | Machinist Mate - Fireman      | A        |
| FN    | Fireman                       | A        |
| BTCM  | Boiler Tender - Master Chief  | B        |
| BT1   | Boiler Tender - 1st Class     | B        |
| BT2   | Boiler Tender - 2nd Class     | B        |
| BT3   | Boiler Tender - 3rd Class     | В        |
| BTFN  | Boiler Tender - Fireman       | B        |
| EMC   | Electrician Mate - Chief      | E        |
| EM1   | Electrician Mate - 1st Class  | E        |
| EM2   | Electrician Mate - 2nd Class  | E        |
| EM3   | Electrician Mate - 3rd Class  | E        |
| EMFN. | Electrician Mate - Fireman    | E        |
| MMCS  | Machinist Mate - Senior Chief | M        |
| MM1   | Machinist Mate - 1st Class    | M        |
| MM2   | Machinist Mate - 2nd Class    | M        |
| MM3   | Machinist Mate - 3rd Class    | M        |
| MMFN  | Machinist Mate - Fireman      | M        |
| FN    | Fireman                       | M        |

#### DEFINITIONS & AMPLIFICATIONS

| ① Readiness      | Cond. I - General Quarters Cond. III - Wertime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② Inter. ?       | Stands for "is the noise level intermittent?" The question mark (?) requires a "yes" or "no" answer. Intermittent noise is defined as the sound generated by machinery which is cycled on and off and results in large fluctuations in noise levels (more than 5 dBA). |
| 3 Comments       | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                      |
| Mess. Loc.       | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                           |
| (5) Rate         | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boiler Tender, First Class-BT1.                                                                                                                                                        |
| (B) Wear Prot. 7 | Stands for "is the individual wearing personal hearing protection?" such as carpluge or carmuffs. The question mark (?) requires an "yes" or "no" enewer.                                                                                                              |
| Watch Stand ?    | Stands for "is the individual a watch stander or a watch<br>stander trainee?". The question mark (?) requires a<br>"yes" or "no" answer.                                                                                                                               |
| Thri/Day at Loc. | Enter the number of hours (to closest % hour) that the individual works at location, If answer is "yes" to @                                                                                                                                                           |

Should be used to describe work task when appropriate

(1) Commonts

times or when it is compared to other ships of the same class. Note that a column marked "Code" is located to the left of General Information section as well as the other sections in the form. This column is designed to eventually carry the designation code to be used in a computerized version of the model for storage and information retrieval purposes.

#### 3.3.1.2 Operating Conditions

The operating conditions section of the Sound Survey Form contains the basic information necessary to identify the operating condition of the ship. This is necessary since, as pointed out in the discussion of the model, both the sound level and the personnel assignment data are believed to vary depending on the operating condition of the ship. The information required is self-explanatory. In addition to the readiness, the operating mode of the ship is noted as "cold iron", "auxiliary steaming" or "underway"; in the case of the latter, the speed and shaft rpm are also noted. Further identification of the readiness condition is provided on the back of the form under Item 1.

#### 3.3.1.3 Sound Level Data

This section of the form contains the basic sound level data to be acquired. Each location to be surveyed is identified under the column called "Measurement Location" with a specific code number. In the case of the Engine Room-Upper Level, eight such locations have been identified. In order to assure that the measurements are taken always at the same locations, a floor plan of each space is provided on the back of the form and each measurement position is identified by the corresponding code number. Spaces for the noise measurements, the type of noise levels measured and comments are provided. Further definitions and amplifications to the noise data are provided on the back of the form under Items 2 and 3. The objective, here obviously, is

to assure repeatability of measurements that are made under the same conditions, in the same location and in the same manner. Finally, the back of the form contains a machinery line-up. This information, which is optional to the survey procedure, is designed as a check of the major machinery items which are operating in the space at the time of the survey. Large variability in noise levels from ship to ship or for the same ship could be explained with this information, by noting if the same equipment line-up is operating.

#### 3.3.1.4 Personnel Assignment Data

The final entry in the Sound Survey Form is entitled "Personnel Assignment Data" and deals with the amount of time different engineering personnel spent at various locations in the engineering spaces. In other words, the objective of this section is to acquire data that may be used to establish a statistical time-motion description of all engineering personnel work assignments on the ship. The design of the form is based on the premise that engineering personnel spent their working hours in one of two job assignments: a) as a watch stander, and b) as a worker. Thus, during the survey, when an engineering division person is identified, the surveyor would determine the closest location in the space at which the operator is standing and enter the proper measurement location. Then, he would proceed to question the individual as to his identification information, such as his billet title and the rate. Finally, he would determine the particular details of the individual's job at the time, specifically, the amount of time spent at this location. For example, if the individual is a watch stander, he will proceed to identify the length of the watch, and the number of hours for that assignment will be entered under "watch". the individual is performing a work task, say cleaning, the number of hours that he performs that work at that location will be entered under "work". Comments are provided for additional

data. The back of the form contains a number of definitions of personnel rates and other support information necessary to complete the form in the proper manner (see Items 4 through 9). Further explanations on the actual procedure for the data acquisition process are provided in the next section on survey methodology.

#### 3.3.2 Survey Methodology

In support of the noise survey forms discussed in the previous section a shipboard sound survey procedure was also developed. The objective of this procedure was to take the user (EPMU personnel) through a step-by-step procedure on how to use the noise survey forms and how to acquire the required sound level and personnel assignment data. Emphasis was placed on the actual measurement procedure and personnel assignment data acquistion process. Special survey techniques were developed in order to ensure that uniform sound level data measurement procedures would be used by different individuals and different units within the Navy participating in the program. Attention was also placed in explaining the personnel assignment data acquisition process since this type of information is a new requirement and is not a part of the typical EPMU surveys. key to this end is the identification of engineering personnel and the time spent at the sound measurement location where they were found. The complete "Shipboard Sound Survey" procedure is shown in Appendix C.

### 3.3.3 Special Study Requirements

As was pointed out, the acquisition of data on the operator duty or personnel assignment for a typical survey would be limited only to the individuals present in the space during the sound level survey. No effort should be expended to locate all engineering personnel assigned to each space. This approach, in

an will stay to

١

most cases, precludes the identification of all engineering personnel and certainly the establishment of the entire daily noise exposure for each individual. Under normal survey conditions, reliance on information from many ships in the same class is placed to establish statistically valid operator duty assignments. However, in order to increase the data base available for this particular study, the EPMU personnel were also asked to undertake an independent personnel assignment survey following the routine procedure just described. independent personnel assignment survey was designed to establish the entire day's personnel assignment data for all engineering personnel on the ship. Thus, although the normal procedure relied on the statistics of many ships measured to describe the daily work assignment of various personnel ratings, this study required a full documentation on the personnel movements in order to evaluate the accuracy of the method with a limited data base.

# 3.4 Experimental Validation of the Data Base

The validation of the analytical noise exposure model and the data base collected was untertaken through the collection of an independent set of noise exposure measurements. These measurements were collected concurrently with the acquisition of the data base through the dosimetry measurements of engineering personnel. Table 4.1 contains the summary of the ships in which dosimetry measurements were acquired. Whenever possible the dosimeter measurements were oriented around the fireman (BT) rate in order to maximize the amount of data acquired in the limited sample of individuals, thus allowing us to develop the proper statistics for comparison purposes.

#### 3.5 Field Data Collection

This section describes the data collection undertaken during the field survey part of the program.

### 3.5.1 EPMU Briefings

As a kickoff to the data collection process conducted by the two EPMU units, a one-day briefing was organized both in the San Diego, California and in the Norfolk, Virginia facilities. A half-day session on the data collection system procedures and the sound survey form was organized. In both cases all EPMU personnel associated with noise level measurements participated. The objective of these briefings, in addition to explaining the forms and the procedure, was to acquaint the units with the objectives of the program and to explain the basic concept of the analytical model on which it was based. Preliminary plans for getting access to the ships and potential measurement schedules were also developed during this period.

### 3.5.2 Data Collection Problems and Time Delays

The original three-month time assigned for the collection of data on 12 FF-1052 ships was eventually extended to a period of over two years. The difficulties encountered in finding and receiving permission for ship surveys in this class were many. However the most important ones can be summarized as follows:

1. The selection of the auxiliary steaming operating condition proved to be a very severe stumbling block. It was found that ships rarely stayed in that condition for any extended period of time and thus it was difficult to plan ahead as to the specific time that condition would be available. In many cases ships that were due to be surveyed had changed their orders and were either underway during the date of the survey or the auxiliary steaming condition could not be maintained for a sufficient length of time to perform the measurements.

- 2. A further problem associated with the auxiliary steaming operating condition was that when ships were found in that condition, many of the engineering personnel who would typically be working in engineering spaces in an underway mode were assigned to other duties on the ship or were on leave from the ship.
- 3. In several cases it was impossible to gain the approval of the Commanding Officer to perform the survey.

These lengthy time delays created other problems, mostly related to the continuity of the project as well as to the training of the EPMU personnel, who in many instances had changed over the two-year period.

#### 3.5.3 The Dosimeter Measurements

Six of the 12 ships surveyed during this study were also subject to the independent experimental data validation process using dosimeters. The objective in all cases was to measure the actual noise exposure problem for several individuals on the ship while the noise survey and the personnel assignment survey were taking place. Typically six individuals could be monitored at one time and in most cases the selection of these individuals was intended to be within the same rate or closely related rate so that a significant statistical sample could be obtained. These same individuals were later interviewed in terms of their time spent at different locations, in order to establish the noise exposure using the model. Table 4.1 has a summary of the ships in which dosimeter measurements were taken.

The difficulties encountered during the acquisition of the dosimeter data can be summarized along two lines. First, the instrumentation used (or available) for this purpose varied over the two-year span. For example, some of the early data were

acquired with a 90 dB threshold and a 5 dB exchange rate between level and time which corresponded to the BUMED Instr. 6260.6 noise standard in effect at the time when this program was initiated. Later when the Navy standard changed to the 84 dB/8-hour exposure with a 4 dB exchange rate (DOD Instr. 6055.3) several of the dosimeter measurements were taken with instrumentation that was set to measure exposure along the new guidelines. This lack of comparability created several problems later on when the data were compared from ship to ship.

Secondly, problems were encountered with several of the dosimeters malfunctioning during the survey. Although each instrument was checked thoroughly and calibrated before each field trip, failures due to either instrumentation related problems or the subject were encountered. The latter was due to individuals hitting the microphone or the instrument causing obviously erroneous readings. This experience seems to reflect the conclusions of other dosimetry studies reported in the literature. The suggested solution is to perform the measurements over several days and discard the first one or two days under the assumption that the user will become accustomed to the process. This approach also allows for data averaging from day-to-day.

#### 3.5.4 Summary of Ships Surveyed

Table 4.1 shows the summary of all the ships that were surveyed and the dates of each survey. In one case the same ship was surveyed twice, this being due to the availability of ships and the desire to complete the data acquisition procedure as soon as possible. As was pointed out, although in all cases the noise level measurements were acquired successfully, the personnel noise assignment data for some of the ships was limited to the number of people that were on the ship at a given time and not on leave, and also to the number of people that were actually working or watch standing in the engineering spaces rather than being assigned to other jobs on the ship.

### 3.5.5 Debriefing of EPMUs

At the completion of all the surveys a short debriefing of all personnel involved in the noise surveys was conducted. This debriefing also took place after the survey of each ship was completed, through telephone communication with the people involved and also by notations provided by them on the results for each ship. Most of the important questions which needed to be addressed and which concerned the variability and difficulty of the survey procedures were answered in these debriefings.

One of the most important factors noted was the time associated with conducting the surveys. It was found that while more information was being sought, especially in terms of additional noise measurements and additional personnel assignment data requested, the amount of time necessary to complete the survey was in no way longer than previously experienced by these units. The reasons for this were twofold: the present surveys were very systematic in terms of the decision process used by the individual performing the measurements; and the additional data requested on personnel assignments were not sufficient to extend the period of the survey over what had been experienced previously. On the average between four and six hours were necessary to complete the cycle.

#### 4.0 SURVEY RESULTS

# 4.1 <u>Introduction</u>

Data resulting from the shipboard surveys may be divided into three categories: A weighted sound level data (Leq - dBA), as a function of location and ship; personnel assignment data in terms of hours spent at specified locations for each personnel category; and dosimetry data which were acquired by instrumentation attached directly to selected personnel. The sound level and personnel work assignment data are used to calculate noise exposure for each personnel category; the dosimetry data give the noise exposure results directly. Data were collected for eleven FF1052 Knox class ships (see Table 4-1), all of which were in port and operating in the auxiliary steaming condition. One of the ships (FF1097) was surveyed twice to provide a total of twelve sets of data.

In the following sections the sound level, work assignment and dosimetry data are summarized; personnel noise exposures are then calculated using the sound level and work assignment data first of all and then by using the dosimetry data. Finally, these noise exposure results are compared with the results obtained using the dosimeters.

# 4.2 Summary of Survey Data

#### 4.2.1 Sound Level Data

For each of the twelve sample ships sound level data were recorded in each of the twelve engineering spaces in the following list.

- 1. Engine room, lower level ELT
- 2. Engine room, upper level EUT

TABLE 4-1. SUMMARY OF FF1052 CLASS (KNOX)
SHIPS SURVEYED BY EPMU UNITS

| NO. | SURVEY   | SHIP DE     | ESIGN! | ATION     | EPMU<br>PERFORMING<br>SURVEY | DOSIMETRY<br>DATA<br>TAKEN |
|-----|----------|-------------|--------|-----------|------------------------------|----------------------------|
| 1   | 2/10/79  | FF-1083     | USS    | Cook      | 5                            | No                         |
| 2   | 2/27/79  | FF-1065     | USS    | Stein     | 5                            | No                         |
| 3   | 2/27/79  | FF-1084     | uss    | Candless  | 2                            | No                         |
| 4   | 3/15/79  | FF-1090     | USS    | Ainsworth | 2                            | No                         |
| 5   | 4/27/79  | FF-1091     | uss    | Miller    | 2                            | No                         |
| 6   | 5/16/79  | FF-1097     | USS    | Moinester | 2                            | No                         |
| 7   | 8/09/79  | FF-1085     | USS    | Pharris   | 2                            | Yes                        |
| 8   | 8/09/79  | FF-1085     | USS    | Beary     | 2                            | Yes                        |
| 9   | 2/04/80  | FF-1092     | USS    | Hart      | 2                            | Yes                        |
| 10  | 2/14/80  | FF-1081     | USS    | Aylwin    | 2                            | Yes                        |
| 11  | 8/27/80  | FF-1097     | USS    | Moinester | 2                            | Yes                        |
| 12  | 12/14/80 | FF-1075     | USS    | Trippe    | 2                            | Yes                        |
|     |          | <del></del> |        |           |                              |                            |

- 3. Engine room, second deck EST
- 4. Fire room, lower level FLT
- 5. Fire room, upper level FUT
- 6. Fire room, second deck FST
- 7. Auxiliary room No. 1, lower level ALT
- 8. Auxiliary room No. 1, upper level AUT
- 9. Auxiliary room No. 2 XRT
- 10. Forced draft blower (FDB) room 1A FAT
- 11. Forced draft blower (FDB) room 1B FBT
- 12. After steering ST

In each of these engineering spaces, measurements were made on the twelve sample ships at 3 to 10 personnel locations, providing a two-way array of data for ship number versus measurement location, as shown in Table 4-2.

Of interest are the variations in the measured noise levels in various engineering spaces: (a) among the measurement locations in a given engineering space, (b) among the ships in the sample for a given engineering space, and (c) among measurements made under similar conditions (that is, the measurement or sampling error).

Conventional two-way analysis of variance calculations [2] were performed on each of the arrays in Table 4-2 to determine the variability among measurement locations and ships in terms of F variables. The computed F values  $(F_{\rm comp})$  for each engineering space and the corresponding F values for homogeneous data at the 1% level of significance  $(F_{0.01})$  are presented in Table 4-3.

The variablilty among ships indicates whether or not any variation in the data is due to inherent differences among ships; if the variation is below the 1% level of significance then the implication is that similar variations may be expected if the same ship were sampled 12 times on different occasions. The

TABLE 4-2(a). SHIP SOUND LEVEL DATA - AUXILIARY STEAMING

|                     |                   |             |             |             | 8           | Sound Level in |             | dBA by Si   | Ship Number    | ber         |             |             |                |
|---------------------|-------------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|----------------|-------------|-------------|-------------|----------------|
| Engineering<br>Area | Measur.<br>locat. | FF-<br>1081 | FF-<br>1092 | FF-<br>1085 | FF-<br>1094 | FF-<br>1090    | FF-<br>1091 | PF-<br>1083 | FF-<br>1065    | FF-<br>1097 | FF-<br>1084 | FF-<br>1097 | FF-<br>1075    |
| Engine Room         | ELIB              | ₩8          | 89          | 85          | 98          | 81             | 8           | 88          | 88             | 81          | ₹           | ₩8          | 88             |
| Lower Level         | E 23              | 88          | 8           | 16          | 83          | 83             | 87          | 88          | 87             | 88          | 87          | <b>%</b>    | 85             |
|                     | <b>E</b> 33       | 88          | ₹<br>8      | 95          | 83          | <b>†8</b>      | 87          | 88          | 91             | 8           | 88          | <b>%</b>    | 87             |
|                     | 亞                 | ₹<br>6      | 95          | 46          | 88          | 88             | 93          | 93          | 8              | 8           | 16          | 87          | &              |
|                     | 配5                | ъ           | 35          | 16          | 8           | 88             | 86          | <b>1</b> 8  | 83             | 88          | <b>%</b>    | <b>%</b>    | 81             |
|                     | 973               | 8           | <b>%</b>    | 87          | ₩8          | 42             | 82          | 88          | ₩8             | <b>ካ</b> 8  | <b>18</b>   | <b>%</b>    | <del>2</del> 8 |
|                     | EL7               | 98          | 88          | 89          | 92          | 77             | 87          | 93          | 88             | <b>ਜੂ</b>   | 78          | 8           | 88             |
| Engine Room         | MINE              | 89          | 89          | 35          | 8           | 85             | 89          | 85          | 87             | 88          | 8           | 88          | <del>2</del> 8 |
| Upper Level         | EUZB              | 4           | 82          | <b>%</b>    | 85          | 78             | 81          | <b>48</b>   | <del>1</del> 8 | <b>R</b>    | 17          | 87          | 87             |
|                     | <b>E03</b>        | ₹8          | <b>%</b>    | ₩8          | 89          | 88             | 78          | 83          | 82             | &           | 83          | 81          | <b>&amp;</b>   |
|                     | 700               | ₩           | 8           | 83          | 91          | 83             | 81          | &           | 83             | 8           | 83          | 81          | 82             |
|                     | 配                 | 88          | <b>%</b>    | 87          | ₩8          | 83             | 88          | 85          | 88             | 85          | 82          | ₹           | 82             |
|                     | EU6               | 88          | 88          | 88          | 85          | 85             | 8           | 85          | 85             | 81          | 83          | ₩8          | 8              |
|                     | E07               | ₹8          | ₹8          | 87          | 83          | 62             | 8           | 83          | 81             | 81          | 62          | 83          | 8              |
|                     | E08               | 81          | 85          | 85          | 85          | 8              | 83          | 84          | ₹<br>8         | 81          | 11          | 3           | 91             |
| Engine Room         | ESIM              | <b>179</b>  | 89          | 7.1         | 75          | 99             | <b>†9</b>   | 89          | 89             | 65          | 23          | 69          | 2              |
| Second Deck         | ES32              | 28          | &           | 78          | <b>1</b> 8  | 8              | 8           | 62          | 81             | 11          | 92          | 62          | <b>&amp;</b>   |
|                     | <b>ES3</b>        | 81          | 85          | 84          | 85          | 62             | 81          | ٤٤,         | 81             | 62          | 62          | 82          | 81             |
|                     | E24               | €           | ₹           | 87          | 83          | &              | 87          | 81          | ₩              | 82          | 82          | ₹           | 83             |
|                     |                   |             |             |             |             |                |             |             |                |             |             |             |                |

TABLE 4-2(b). SHIP SOUND LEVEL DATA - AUXILIARY STEAMING

|                     |                   |             |                |             | %           | Sound Level in |                | dBA by S    | Ship Number | ber         |             |             |              |
|---------------------|-------------------|-------------|----------------|-------------|-------------|----------------|----------------|-------------|-------------|-------------|-------------|-------------|--------------|
| Engineering<br>Area | Measur.<br>locat. | FF-<br>1081 | FF-<br>1092    | FF-<br>1085 | FF-<br>1094 | FF-<br>1090    | FF-<br>1091    | FF-<br>1083 | FF-<br>1065 | FF-<br>1097 | FF-<br>1084 | FF-<br>1097 | FF-1<br>1075 |
| File Room           | FLIW              | 87          | 88             | 91          | 8           | 8              | <b>1</b> 8     | 98          | 35          | 8           | 82          | 88          | 88           |
| Lower Level         | FL2B              | 88          | 583            | 91          | 8           | 92             | 82             | 88          | 98          | 8           | 88          | 88          | 82           |
|                     | FL3B              | <b>1</b> 8  | <del>1</del> 8 | 85          | 82          | 79             | 84             | 85          | 83          | 85          | 78          | 87          | 88           |
|                     | FILA              | 91          | 8              | 89          | 81          | 74             | 81             | 95          | 82          | <b>178</b>  | 80          | 83          | 98           |
|                     | FL5               | 88          | <b>178</b>     | 96          | 82          | 75             | 78             | 88          | 85          | 8           | 81          | 82          | 8            |
|                     | FT.6              | 87          | 82             | 8           | 88          | 81             | . 85           | 178         | 98          | 16          | 81          | 83          | ₩8           |
|                     | FL.7              | 88          | <b>%</b>       | 91          | 89          | 83             | <b>%</b>       | 83          | ₩8          | 91          | 85          | <b>%</b>    | ₩8           |
|                     | FT.8              | 88          | 88             | 89          | 87          | 96             | 85             | 88          | 87          | 83          | 88          | 89          | 82           |
| -                   | FT.9              | 93          | 83             | 91          | 82          | 87             | 83             | 87          | 88          | 95          | 81          | 76          | 82           |
|                     | FL.10             | 87          | 85             | 90          | 8           | 85             | 88             | 85          | 87          | 88          | 87          | 88          | 85           |
| File Room           | FULW              | 75          | 19             | 72          | 75          | 65             | 1/4            | 89          | 29          | 74          | 65          | 77          | 89           |
| Upper Level         | FUZW              | 93          | 88             | 95          | 95          | 82             | 83             | 87          | 88          | 95          | 87          | 93          | 35           |
|                     | FU3B              | ₩8          | 81             | 95          | 88          | 73             | 83             | 88          | 84          | 85          | 81          | 98          | ₩            |
|                     | F04               | 88          | 85             | 101         | 82          | 7.7            | 82             | 83          | 85          | 95          | 83          | <b>%</b>    | 88           |
|                     | FUS               | ₹           | 88             | 26          | 88          | 85             | <del>1</del> 8 | 98          | 98          | 94          | 88          | 93          | 89           |
|                     | FU6               | &           | <b>1</b> 78    | 91          | 82          | 81             | 83             | 88          | ₩           | 91          | 178         | 85          | 88           |
|                     | FU7               | 92          | 88             | 91          | 89          | 88             | 83             | 8           | 83          | 104         | 87          | 95          | 86           |
|                     | FU8               | 92          | <b>%</b>       | 95          | 98          | 83             | 62             | 8           | 95          | %           | 87          | 91          | 8            |
|                     | FU9               | 26          | 82             | 8           | 82          | 85             | 85             | 89          | ₩           | 95          | 81          | 88          | 83           |
|                     | FULO              | 88          | <b>†</b> 8     | 91          | 8           | 80             | 87             | 86          | 98          | 95          | 8           | 91          | 8            |
|                     |                   |             |                |             |             |                |                |             |             |             |             |             |              |

TABLE 4-2(c). SHIP SOUND LEVEL DATA - AUXILIARY STEAMING

|                       |                  |             |                |             | Sol         | Sound Level |          | A by Sh          | to Numb   | er          |             |             |             |
|-----------------------|------------------|-------------|----------------|-------------|-------------|-------------|----------|------------------|-----------|-------------|-------------|-------------|-------------|
| Engineering<br>Area   | Measur.<br>loca. | FF-<br>1081 | FF-<br>1092    | FF-<br>1085 | FF-<br>1094 | 쨘-<br>1090  | 下0       | FF-<br>1093      | FF- FF- F | FF-<br>1097 | FF-<br>1084 | FF-<br>1097 | FF-<br>1075 |
| File Room             | 1331             | 93          | 88             | 95          | 92          | 85          | 93       | 8                | ħδ        | 66          | 91          | 700         | 91          |
| LOWER LEVEL           | <b>3</b> 2       | 88          | 87             | 16          | 83          | 78          | 83       | <b>%</b>         | ₩8        | 35          | 8           | 94          | 8           |
|                       | <b>15</b> 3      | 95          | 85             | 93          | 88          | 82          | 88       | 88               | 88        | 94          | 83          | 87          | 89          |
| Aux. Room             | ALI              | 8           | 85             | 88          | 88          | 89          | 85       | 91               | 86        | 92          | 88          | 88          | <b>%</b>    |
| No. 1<br>[Camer [eve] | ALZ              | ጀ           | 86             | %           | 93          | 95          | ₩8       | 95               | 35        | 93          | 35          | 16          | 26          |
|                       | AL3              | ช           | 88             | 93          | <b>8</b>    | 95          | 88       | 8                | 93        | 95          | 8           | 8           | &           |
|                       | AL!              | &           | 88             | 95          | 87          | 16          | 87       | 89               | 46        | 35          | 87          | 8           | &           |
|                       | AL5              | 8           | 82             | 91          | 88          | 8           | <b>%</b> | 95               | 8         | 88          | 88          | 95          | <u>ل</u>    |
|                       | ALG              | 35          | 8              | 95          | 8           | 16          | 87       | 87               | 35        | 16          | 88          | 16          | 8           |
|                       | AL7              | 87          | 83             | 92          | ₩           | 88          | 98       | 89               | 8         | 86          | 84          | 91          | 87          |
| Aux. Room             | AUJB             | 98          | 8              | 87          | 8           | 87          | 80       | 98               | 98        | 87          | 98          | 85          | 8           |
| No. 1                 | AUZB             | 88          | &              | 88          | 8           | 85          | 85       | 8                | 88        | 88          | <b>48</b>   | ₩8          | 82          |
| Todds                 | AU3              | 87          | 83             | 88          | 8           | 88          | ₩8       | 88               | 82        | 8           | 88          | 98          | 84          |
|                       | AU               | 88          | 88             | 87          | 8           | 8           | ₩8       | 87               | 88        | 16          | 88          | 87          | 88          |
|                       | AUS              | 87          | 85             | 91          | 83          | 88          | 83       | 89               | 8         | 8           | 87          | 88          | <b>8</b> 8  |
|                       | AU6              | 8           | <del>7</del> 8 | 91          | 88          | 82          | 8        | 88               | 87        | 87          | <b>₹</b> 8  | 88          | 88          |
|                       | AU7              | 83          | 16             | 95          | 91          | 83          | 16       | 93+              | 87        | 16          | 87          | 88          | 88          |
|                       | AU8              | 87          | <del>1</del> 8 | 86          | 91          | 82          | 87       | <del>\$</del> 68 | 16        | <b>8</b> 7  | 83          | 85          | 87          |
|                       |                  |             |                |             |             |             |          |                  |           |             |             |             |             |

TABLE 4-2(d). SHIP SOUND LEVEL DATA - AUXILIARY STEAMING

|                     |                  |             |             |             | Sot         | and Leve    | Sound Level in dBA by Ship Number | A by Sh     | dp Numb     | er          |             |             |             |
|---------------------|------------------|-------------|-------------|-------------|-------------|-------------|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Engineering<br>Area | Measur.<br>loca. | PF-<br>1081 | FF-<br>1092 | FF-<br>1085 | FF-<br>1094 | FF-<br>1090 | FF-<br>1091                       | FF-<br>1083 | FF-<br>1065 | FF-<br>1097 | PF-<br>1084 | FF-<br>1097 | FF-<br>1075 |
| Aux. Room           | MIX              | 19          | 73          | 104         | 62          | 107         | 179                               | 73          | 99          | 99          | 105         | 72          | 23          |
| > <b>.</b> 02       | Ŋ                | <b>1</b> 9  | 92          | 901         | 65          | 103         | 29                                | &           | <b>62</b>   | 63          | 101         | 8           | 26          |
|                     | ಜ                | 20          | 73          | 104         | 75          | 100         | 179                               | 62          | 29          | 65          | 102         | 7.1         | 22          |
|                     | МұХ              | 62          | 28          | 75          | 62          | 92          | 52                                | 55          | 63          | 49          | 77          | 82          | 62          |
|                     | ĸ                | 92          | <b>®</b>    | 93          | 20          | 83          | 19                                | 87          | 99          | 23          | %           | 8           | 9           |
|                     | <b>X</b>         | 73          | 88          | 92          | 62          | 91          | 75                                | 58          | 62          | 98          | 82          | 77          | 62          |
| FIDB Room i.A.      | FA1              | <b>†</b> 6  | 78          | <b>8</b> 8  | ₩8          | 62          | 89                                | 8           | 82          | 83          | 1           | ₩8          | 35          |
|                     | FA2              | 26          | 78          | 85          | 8           | 78          | 29                                | 77          | 92          | 81          | ı           | 85          | 8           |
|                     | FA3              | 8           | 83          | 84          | 81          | 74          | 99                                | 78          | ₩<br>8      | 81          | •           | 83          | 82          |
| FUB Room 1B         | <b>193</b>       | 82          | 75          | 75          | 8           | 99          | 19                                | 11          | 62          | 88          | 70          | 75          | 74          |
|                     | <b>78</b> 2      | <b>178</b>  | 75          | 74          | 81          | 65          | <b>6</b> 2                        | 89          | 78          | ₩8          | 7.4         | 73          | 7.7         |
|                     | FB3              | 83          | 2           | 72          | 79          | 65          | 65                                | 62          | 77          | 89          | 73          | 80          | 74          |
| After               | SIW              | 53          | 20          | 29          | 25          | 69<br>99?   | 1                                 | +50         | 29          | <b>29</b>   | 73          | 20          | 89          |
| Steering            | 82 <u>8</u>      | 25          | ß           | 99          | 26          | 61          | ı                                 | +50         | 69          | 65          | 20          | 99          | 89          |
|                     | 83               | 23          | 52          | 17          | 23          | 70          | ı                                 | +50         | 74          | 11          | 69          | 69          | 89          |
|                     | Sφ               | 弘           | 52          | 11          | 52          | 92          | 1                                 | +50         | 92          | 74          | 63          | 11          | 89          |
|                     |                  |             |             |             |             |             |                                   |             |             |             |             |             |             |

RESULTS OF ANALYSIS OF VARIANCE STUDIES OF SHIP NOISE MEASUREMENTS TABLE 4-3.

| Regine room, lower level         7         12         7.4         3.1         4.5         2.5         2.79         3.3           Regine room, upper level         8         12         4.3         2.9         2.7         2.5         2.83         3.3           Fire room, upper level         4         12         7.4         3.1         4.5         2.5         2.8         2.8         3.7         6.8         3.3           Fire room, lower level         10         12         2.4*         2.6         2.5         2.4         2.8         3.1         7         6.8         3.1         7         7         7         7         7         7         7         7         2.8         3.1         7         7         1.9         5.7         2.4         2.8         3.1         7         3.2         2.79         5.7         3.2         2.79         5.7         3.2         2.79         5.7         3.2         2.79         5.7         3.2         2.79         5.7         3.2         3.19         3.2         3.2         3.19         3.2         3.2         3.13         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2 <th< th=""><th>Region in Ship</th><th>Sample<br/>Size</th><th>le<br/>e</th><th>Variation of Level with Mement Location</th><th>Variation of Noise<br/>Level with Measure-<br/>ment Location</th><th>Variation in Space<br/>Aver.Noise Levels v<br/>Ship Number</th><th>Variation in Space<br/>Aver.Noise Levels with<br/>Ship Number</th><th>Standard<br/>Deviation</th><th>rd</th></th<> | Region in Ship              | Sample<br>Size | le<br>e | Variation of Level with Mement Location | Variation of Noise<br>Level with Measure-<br>ment Location | Variation in Space<br>Aver.Noise Levels v<br>Ship Number | Variation in Space<br>Aver.Noise Levels with<br>Ship Number | Standard<br>Deviation | rd    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|---------|-----------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-----------------------|-------|
| 7       12       7.4       3.1       4.5       2.5       2.79         8       12       4.3       2.9       2.7       2.5       2.83         4       12       >100       4.4       4.2       2.8       1.97         10       12       2.4*       2.6       2.5       2.4       2.89         10       12       42.1       2.6       14.1       2.4       2.89         10       12       42.1       2.6       14.1       2.4       3.11         3       12       13.9       5.7       3.7       3.2       2.79         7       12       5.4       3.1       10.8       2.5       1.87         8       12       2.4*       2.9       5.8       2.5       2.13         6       12       4.9       3.4       14.9       2.6       8.387       1         3       11       4.2*       5.7       23.4       2.6       8.387       1         4       10       2.9*       4.6       23.6       3.2       2.41         4       10       2.9*       4.6       23.6       3.2       3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | Locations      | Ships   | Fcomp.                                  | F <sub>0.01</sub>                                          | Foomp.                                                   | F <sub>0.01</sub>                                           | ထမ                    | st    |
| 8         12         4.3         2.9         2.7         2.5         2.8           4         12         >100         4.4         4.2         2.8         1.97           10         12         2.4*         2.6         14.1         2.4         3.11           10         12         42.1         2.6         14.1         2.4         3.11           3         12         13.9         5.7         5.7         3.2         2.79           7         12         5.4         3.1         10.8         2.5         1.87           8         12         2.4*         2.9         5.8         2.5         2.13           6         12         4.9         3.4         14.9         2.6         8.38?           3         11         4.2*         5.8         17.9         3.4         2.65           3         12         1.6*         5.7         23.4         3.2         2.41           4         10         2.9*         4.6         23.6         3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Engine room, lower level    | 7              | 12      | 7.4                                     | 3.1                                                        | 4.5                                                      | 2.5                                                         | 2.79                  | 3.88  |
| 4         12         >100         4.4         4.2         2.8         1.97           10         12         2.4*         2.6         2.5         2.4         2.89           10         12         42.1         2.6         14.1         2.4         2.89           3         12         13.9         5.7         5.7         3.2         2.79           7         12         5.4         3.1         10.8         2.5         1.87           8         12         2.4*         2.9         5.8         2.5         1.87           6         12         4.9         3.4         14.9         2.6         8.387           3         11         4.2*         5.8         17.9         3.4         2.65           3         12         1.6*         5.7         23.4         3.2         2.41           4         10         2.9*         4.6         23.6         3.2         2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Engine room, upper level    | <b>∞</b>       | 12      | 4.3                                     | 2.9                                                        | 2.7                                                      | 2.5                                                         | 2.83                  | 3.40  |
| 10         12         2.4*         2.6         2.5         2.4         2.89           10         12         42.1         2.6         14.1         2.4         3.11           3         12         13.9         5.7         5.7         3.2         2.79           7         12         5.4         3.1         10.8         2.5         1.87           8         12         2.4*         2.9         5.8         2.5         2.13           6         12         4.9         3.4         14.9         2.6         8.387           3         11         4.2*         5.8         17.9         3.4         2.65           3         12         1.6*         5.7         23.4         3.2         2.41           4         10         2.9*         4.6         23.6         3.2         3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Engine room, second deck    | 7              | 12      | >100                                    | 4.4                                                        | 4.2                                                      | 2.8                                                         | 1.97                  | 6.78  |
| 10         12         42.1         2.6         14.1         2.4         3.11           3         12         13.9         5.7         5.7         3.2         2.79           7         12         5.4         3.1         10.8         2.5         1.87           8         12         2.4*         2.9         5.8         2.5         2.13           6         12         4.9         3.4         14.9         2.6         8.387           3         11         4.2*         5.8         17.9         3.4         2.65           3         12         1.6*         5.7         23.4         3.2         2.41           4         10         2.9*         4.6         23.6         3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fire room, lower level      | 10             | 12      | 2.4*                                    | 2.6                                                        | 2.5                                                      | 2.4                                                         | 2.89                  | 3.80  |
| 3       12       13.9       5.7       5.7       3.2       2.79         7       12       5.4       3.1       10.8       2.5       1.87         8       12       2.4*       2.9       5.8       2.5       2.13         6       12       4.9       3.4       14.9       2.6       8.387         3       11       4.2*       5.8       17.9       3.4       2.65         3       12       1.6*       5.7       23.4       3.2       2.41         4       10       2.9*       4.6       23.6       3.2       3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fire room, upper level      | 10             | 12      | 42.1                                    | 2.6                                                        | 14.1                                                     | 2.4                                                         | 3.11                  | 7.18  |
| 7       12       5.4       3.1       10.8       2.5       1.87         8       12       2.4*       2.9       5.8       2.5       2.13         6       12       4.9       3.4       14.9       2.6       8.387         3       11       4.2*       5.8       17.9       3.4       2.65         3       12       1.6*       5.7       23.4       3.2       2.41         4       10       2.9*       4.6       23.6       3.2       3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fire room, second deck      | m              | 12      | 13.9                                    | 5.7                                                        | 5.7                                                      | 3.2                                                         | 2.79                  | 5.00  |
| 8         12         2.4*         2.9         5.8         2.5         2.13           6         12         4.9         3.4         14.9         2.6         8.387           3         11         4.2*         5.8         17.9         3.4         2.65           3         12         1.6*         5.7         23.4         3.2         2.41           4         10         2.9*         4.6         23.6         3.2         3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aux. room No.1, lower level | 7              | 12      | 5.4                                     | 3.1                                                        | 10.8                                                     | 2.5                                                         | 1.87                  | 3.04  |
| 6     12     4.9     3.4     14.9     2.6     8.387       3     11     4.2*     5.8     17.9     3.4     2.65       3     12     1.6*     5.7     23.4     3.2     2.41       4     10     2.9*     4.6     23.6     3.2     3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aux. room No.2, upper level | ∞              | 12      | 2.4*                                    | 2.9                                                        | 5.8                                                      | 2.5                                                         | 2.13                  | 2.75  |
| 3     11     4.2*     5.8     17.9     3.4     2.65       3     12     1.6*     5.7     23.4     3.2     2.41       4     10     2.9*     4.6     23.6     3.2     3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aux. room No.2              | 9              | 12      | 6.4                                     | 3.4                                                        | 14.9                                                     | 2.6                                                         | 8.387                 | 15.53 |
| 3 12 1.6* 5.7 23.4 3.2 2.41<br>4 10 2.9* 4.6 23.6 3.2 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FDB room 1A                 | e              | 11      | 4.2*                                    | 5.8                                                        | 17.9                                                     | 3.4                                                         | 2.65                  | 6.74  |
| 4 10 2.9* 4.6 23.6 3.2 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FDB room 1B                 | ю              | 12      | 1.6*                                    | 5.7                                                        | 23.4                                                     | 3.2                                                         | 2.41                  | 6.85  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | After Steering              | 4              | 10      | 2.9*                                    | 9.4                                                        | 23.6                                                     | 3.2                                                         | 3.14                  | 7.92  |

\*Hypothesis of homogeneity accepted at 1% level of significance.

same reasoning can be used for the location data in the same space. That is, if the variation among locations is below the 1% level of significance, then similar results may be expected if the same location on any particular ship were sampled a number of times rather than sampling several locations once only; in other words, there are no inherent differences among locations in the same space.

Also shown in this table are the standard deviations of the measurements in each engineering space; including all effects due to variations among both location and ship  $(s_t)$  and the standard deviation due only to variations from ship to ship in the distribution of noise levels throughout a given space  $(s_e)$ .

Note that the results reveal a statistically significant variation among the measurements on different ships in all twelve engineering spaces; that is, there are inherent differences among ships. A statistically significant variation among the measurements at different locations is also indicated for seven of the twelve engineering spaces; homogeneity among measurement locations is suggested only for (a) Fire room, lower level,

(b) Auxiliary room No. 1, upper level, (c) FDB room 1A, (d) FDB room 1B, and (e) After steering.

Although there appear to be statistically significant variations in the measurements from ship to ship and location to location in most cases, the question remains as to whether these variations are of practical significance. The standard deviation results in Table 4-3 address this issue. Specifically, when the variations in noise levels among measurement locations in a given space and among ships for a given space, are removed from the total variability, the remaining variability in the results, as defined by the standard deviation se, is consistently between 2 and 3 dBA in most of the engineering spaces. The only major exception is Auxiliary room No.2 where the data are suspect. A weighted

average value of  $s_{e}$  over all engineering spaces is given by

$$s_e = \left[\frac{1}{n}\sum_{i=1}^{n} n_i s_{ei}^2\right]^{\frac{1}{2}}$$
 (4.1)

where  $n_1$  is the number of measurements and  $s_{e1}$  is the computed error standard deviation in the ith engineering space, and n is the total number of measurements. Using the data in Table 4-1 (excluding the suspicious Auxiliary Room No.2 result), Eq. 4.1 yields

$$s_e = 2.7 \text{ dBA}$$
 (4.2)

This is the best estimate for the measurement error; (that is, the standard deviation of measurements which were taken under similar conditions) and represents the probable error if one ship and one location in each area were sampled a number of times instead of sampling 12 ships and several locations only once.

Table 4-3 shows that the overall standard deviation  $s_t$  of the sampled data in some spaces is less then 1 dBA higher than  $s_e$ , for example in the engine room upper level and the auxiliary room no. 1 upper level. This suggests that variations due to exact location (in a given space) and ship are relatively small for these spaces; that is, most of the error is attributable to random sampling error and the total error is only slightly reduced by sampling several ships and locations in each space rather than sampling one ship and one location in each space on several different occasions.

In other engineering areas, however, the overall standard deviation  $s_t$  of the measurements far exceeds  $s_e$ ; for example, in the FDB rooms and after steering. In most cases, this is due to large variations from ship to ship rather than among measurement

locations in a particular space. In the few cases where there is a large variation among locations in a particular space, it is usually due to a single measurement location which is quite different from all others, for example, ESIW in the engine room second deck and FUIW in the fire room upper level.

We may conclude the following for the shipboard noise level data:

- 1. Variations in noise level from location to location are due partly to inherent differences among locations but primarily due to random sampling error. That is, the scatter in results would be almost as large if one location in each space were sampled several times instead of several locations being sampled only once.
- 2. Variations in noise level from ship to ship are due partly to differences among ships and partly to random sampling error. The effect of differences among ships is larger than the effect of differences among locations in a given engineering space.
- 3. Noise level variations, both among locations in a particular engineering space and among ships, are large, as evidenced by the standard deviation data in Table 4-3.

#### 4.2.2 Personnel Assignment Data

For each of the twelve sample ships, personnel assignment data were recorded for all personnel who were required to spend some time in an engineering space while the ship was operating in the auxiliary steaming condition. For any given personnel grade the quantity of interest is the variability in both the assignment locations and the amount of time spent at the assigned locations:

- a) among the 12 ships in the sample, and
- b) among personnel on the same ship.

Also of interest is the variability among measurements made under similar conditions; that is, the random sampling error.

The personnel assignment data were analyzed using a two dimensional analysis of variance on the data in Appendix D. tion of the Appendix D data shows that on a given ship there are many grades for which no data are available. The data resulting from the analysis of variance are presented in Table 4-4 in units of hours and in terms of F values (see preceding section) and standard deviations for each personnel grade. The F values for variations among ships are a measure of the variability from ship to ship due to inherent differences in each ship. results show that out of 26 grades, the variability in the data for only 8 grades cannot be explained almost entirely by random sampling errors. Thus for the remaining 18 grades the results suggest that the scatter in the data would be almost as great if the same ship were sampled 12 times instead of sampling 12 different ships only once. This implies that the overall variability in the personnel assignment data is due mainly to random sampling errors rather than to inherent differences among ships and may be characterized by the standard deviation of the data for each personnel grade. The results are included in Table 4-4 and show that the variability is indeed very large.

We may conclude the following for the personnel assignment data.

1. The variability in the data from ship to ship for most of the personnel grades is due partly to inherent differences between ships but primarily to random sampling errors. That is, the scatter in results would be almost as great !

Table 4-4 Personnel Assignment Data Variability

| Personnel<br>Grade | No. of<br>Locs.                 | F values for varia-<br>tions among ships                                                                                                                                                                                                                                   | Total Standard Deviation or mean error (hrs)                                                                                                                                                                                                         |
|--------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 1015123616231495425131347161295 | insufficient data 3.17* 3.69* 1.27 2.14 3.26* insufficient data 1.41 insufficient data insufficient data 1.16 1.38 2.80* 5.85* insufficient data 4.70* 2.72* 1.44 insufficient data insufficient data 1.36 0.98 1.72 1.36 1.19 1.19 insufficient data 11.0* 1.52 1.97 1.25 | 0.16<br>0.66<br>0.28<br>0.78<br>1.50<br>1.31<br>0.36<br>1.12<br>0.14<br>1.12<br>0.47<br>0.51<br>1.27<br>0.65<br>0.90<br>1.01<br>0.58<br>1.33<br>1.69<br>1.44<br>1.79<br>2.14<br>1.87<br>1.70<br>1.95<br>1.53<br>1.69<br>0.91<br>1.62<br>1.69<br>1.93 |
| BT1<br>BTC         | 22<br>13<br>8                   | 1.58<br>0.65<br>1.46                                                                                                                                                                                                                                                       | 1.61<br>1.74<br>1.28                                                                                                                                                                                                                                 |

<sup>\*</sup> Statistically significant variation at 1% level of significance.

if one ship were sampled several times rather than if 12 different ships were sampled only once.

- 2. The amount of time assigned to individual locations varies significantly from ship to ship for a given personnel grade. This is due primarily to random sampling errors and partly to inherent differences in the operation of each ship.
- 3. Within a given personnel grade on a particular ship there is a significant variability in both
  - a) the locations assigned, and
  - b) the amount of time assigned to each location.
- 4. The large variability associated with items 2 and 3 above suggests that we should expect equally large variabilities in the personnel noise exposure results.

# 4.2.3 Dosimeter Data

Dosimeter data were collected on six of the twelve sample ships at the same time as noise level and personnel assignment data.

Of interest is the variability of the dosimeter data for the same personnel grade:

- a) among the six ships
- b) among personnel on the same ship

and any

Data were collected for 48 personnel on the following ships:

FF-1094, USS Pharris FF-1085, USS Beary FF-1092, USS Hart FF-1052, USS Aylwin FF-1097, USS Moinester FF-1075, USS Trippe

The threshold below which sound energy or noise exposure was not accumulated was set on the dosimeters to 90 dBA for all ships except the USS Moinester where it was set to 80 dBA. The exchange rate between energy and time was set to 5 dBA for the 90 dBA threshold data and 4 dBA for the 80 dBA threshold data. Due to this variability, all the noise exposures measured using dosimeters were converted to equivalent sound levels. This allowed easy comparisons among dosimeter results and between dosimeter results and equivalent sound levels calculated using measured sound level data and location assignments for each individual.

The relationship between daily noise dose (DND) and equivalent sound level (Leq) is:

DND = 
$$10^{(L_{eq}-90)/16.61} = 2^{(L_{eq}-90)/5}$$
 (4.3)

The first step in the statistical evaluations is to determine whether there is a significant variation in the equivalent sound level exposure of each grade of personnel from one ship to the next. The appropriate approach here is an analysis of variance test of the measurements among various ships, but the data in Table 4-5 are adequate to perform such a test for only one grade of personnel, namely, BT3.

Table 4-5. Equivalent Sound Levels from Dosimeter Data

|             | · · · · · · · · · · · · · · · · · · · |        | Equivalen      | t Sound L | evel in D | BA by Shi |                |
|-------------|---------------------------------------|--------|----------------|-----------|-----------|-----------|----------------|
| Orade       | Individual                            | FF1094 | <b>FF</b> 1085 | FF1092    | FF1052    | FF1097    | <b>FF1</b> 075 |
| BTFN        | 1                                     | 93.3   |                | 98.3      |           |           | 91.3           |
|             | 2                                     | 96.0   |                |           |           |           | 84.8           |
|             | 3                                     | 96.3   |                |           |           |           |                |
|             | 4                                     | 92.4   |                |           |           |           | ]              |
|             | 5                                     | 88.8   |                |           |           |           |                |
|             | 6                                     | 92.2   |                |           |           |           |                |
| BTFA        | 1                                     | 88.2   | 84.3           |           |           |           | 84.8           |
|             | 2                                     | 86.1   |                |           |           |           |                |
| BT2         | 1                                     | 87.1   |                |           |           |           | 87.2           |
|             | 2                                     |        | _              |           |           |           | 78.0           |
| BT3         | 1                                     | 91.6   | 85.5           | 82.8      | 92.0      | 90.0      | 86.6           |
|             | 2                                     | 1 .    | 84.1           |           | 90.4      | 93.0      | 87.5           |
| <u> </u>    | 3                                     |        | 80.8           |           | 91.1      | 95.0      |                |
|             | 4                                     |        | 89.7           |           |           | 91.0      |                |
| MMFN        | 1                                     |        |                | 94.8      |           | 95.0      | 90.6           |
|             | 2                                     |        |                | 91.1      |           |           | 84.0           |
|             | 3                                     |        |                |           |           |           | 90.1           |
| <b>MM</b> 3 | 1                                     |        |                |           | 88.1      |           | 94.7           |
|             | 2                                     |        |                |           | 87.6      |           |                |
|             | 3                                     |        |                | l         | 88.4      |           |                |
| BTFR        | ı                                     | 97.9   |                |           |           |           |                |
|             | 2                                     | 85.1   |                |           |           |           | ı              |
| BTl         | 1                                     |        | 86.1           |           |           |           |                |
| MMFR        | 1                                     |        |                | 92.4      |           |           |                |
| MMFA        | 1                                     |        |                | 88.2      |           | 81.3      |                |
| FN          | 1                                     |        |                |           |           | 95.0      |                |

An analysis of variance test was performed on the data for grade BT3 in Table 1 using conventional procedures [2] with the following results:

$$F_{comp} = 6.66$$

$$F_{0.01} = 6.99$$

In summary, the computed F value for variations from one ship to the next falls just below the 99 percentile of the appropriate F distributions. Hence, a hypothesis of homogeneity would be accepted at the 1% level of significance; that is, the variation in the dosimeter data from ship to ship can be explained by random sampling errors instead of being due to inherent differences in the operation of each ship.

The analysis of variance studies for the BT3 data show that the standard deviation of the error (with the small variability among ships removed) is estimated to be  $2.5\,\mathrm{dBA}$ . If the variability among ships is considered to be insignificant for the other grades as well, then the average standard deviation of all the measurements for each grade is given in Table 4-6. The average over all grades is  $s=3.9\,\mathrm{dBA}$ .

Table 4-6. Standard Deviations of Equivalent Sound Levels

| Grade | Sample Size | Standard Deviation (dBA) |
|-------|-------------|--------------------------|
| BTFN  | 9           | 4.40                     |
| BTFA  | 4           | 1.74                     |
| BT2   | 3           | 5.28                     |
| BT3   | 15          | 4.04                     |
| MMFN  | 6           | 4.01                     |
| MM3   | 4           | 3.35                     |

We may draw the following conclusions for the dosimeter data:

- 1. The scatter in the results for a given personnel grade is large (see Table 4-6) and can be attributed mainly to random sampling error and only slightly to inherent differences among ships.
- 2. The variation in the data among personnel in the same grade is due primarily to differences in location assignments when the ship is in the auxiliary steaming condition. Some of the variability is also attributable to random sampling error.

# 4.3 Noise Exposure Results

The personnel location assignment data were used together with noise level data to compute noise exposures in terms of daily noise doses (DND) and equivalent sound levels (Leq) using the following equations:

$$DND = \frac{C_1}{T_1} + \frac{C_2}{T_2} + \dots + \frac{C_N}{T_N}$$
 (4.4)

$$T_{j} = 8/2 (L_{j}^{-90})$$
 (4.5)

L<sub>j</sub> is the noise level at location j C<sub>j</sub> is the time (in hours) spent at location j

Leq = 
$$16.61 \log_{10}(DND) + 90 dBA$$
 (4.6)

The above equations are based on the OSHA criteria which uses a 90 dBA threshold below which all noise is considered not to contribute to personnel exposure. A DND of 1.0 is an exposure of 90 dBA for eight hours per day. The OSHA criteria also calls for a 5 dBA energy exchange; that is if the sound level is

increased to 95 dBA then a DND of 2.0 will be accumulated for an eight-hour exposure and a DND of 1.0 for a 4-hour exposure. When personnel are exposed to different sound levels for differing amounts of time the daily noise dose is calculated using equations 4.4 and 4.5 and the equivalent sound level (Leq) is calculated using equation 4.6. The equivalent sound level is the continuous eight-hour noise level which would produce the daily noise dose calculated using equations 4.4 and 4.5.

When equations 4.4 through 4.6 were used with the available data to calculate noise exposures, the results obtained were practically useless because almost no one was ever exposed to noise levels in excess of 90 dBA, resulting in DNDs of zero. For this reason the threshold below which noise is not considered to contribute to exposure was lowered from 90 dBA to 80 dBA (which is specified in the most recent Navy regulation). The remaining parts of the OSHA criterion were left unchanged; that is a DND of 1.0 is equivalent to eight hours exposure to 90 dBA and the exchange rate between energy and time is 5 dBA.

Lowering of the threshold also meant that the results were not as sensitive to small errors in sound level measurements, as most sound level measurements were above the 80 dBA threshold.

For daily noise doses of zero (when an individual spends his entire workday in a noise environment below the threshold of 80 dBA) the equivalent sound level is undefined and is represented in the tables and appendices to follow by asterisks.

Using the 80 dBA threshold, the personnel assignment data and location noise level data, daily noise doses and equivalent sound levels were calculated on both individual, grade average and ship average bases. Results were also calculated for the above three cases using area average and sub-area average noise levels as well as individual noise levels. The purpose of these

various calculations, which involved different averaging methods, was threefold: to establish which method provided best agreement with the dosimeter data; to determine whether or not it was necessary to consider personnel on an individual basis or even a grade average basis; and to evaluate the effect of using space average noise levels rather than individual measurements for each specified work location.

# 4.3.1 Personnel Noise Exposure Results using Individual Location Noise Data

The exposure results included here were calculated with no area averaging of the sound level data.

#### 4.3.1.1 Individual Personnel Exposure Results

Daily noise doses and equivalent sound levels were calculated for each individual surveyed on all 12 ships, using individual location noise data. The data are included in Appendix E and personnel with daily noise doses greater than one are listed in Table 4-7.

The table shows considerable scatter in the data. This is to be expected from the considerable scatter in the personnel assignment data discussed in the previous section. Out of a sample size of 385, 49 were found to be overexposed, 8 had an exposure in excess of 200%, and the highest exposure was 428%.

### 4.3.1.2 Personnel Noise Exposure Averaged by Grade

The individual personnel noise exposure data were averaged to obtain grade averages for each personnel grade on each ship; the results are included in Appendix F. Equivalent sound levels which are undefined (corresponding to a DND of zero) are not included in the ESL averages; however, DNDs of zero are included

\* grade average noise dose greater than 1.0

Table 4-7. Individual Personnel Daily Noise Doses Greater than 1.0 Using Sound Levels at Individual Locations

| BKS         1.31*         1.31*           BKI         2.48*         1.81*         1.81*           BKI         2.248*         1.28*         1.81*           BKI         4.28*         1.31*         1.63*           FA         MITOR         1.58*         1.31         1.79*           MINTA         1.87*         1.31*         1.79*         1.42*           MINTA         1.28*         1.31*         1.32*         1.14*           MINTA         1.29*         1.31*         1.42*         1.14*           MINTA         1.29*         1.15*         1.15*         1.14*           MINTA         1.20*         1.31*         1.15*         1.14*           MINTA         1.20*         1.15*         1.15*         1.14*           MINTA         1.21*         1.21*         1.21*         1.10*           MINTA         1.21*         1.21*         1.21*         1.10*           MINTA         1.21*         1.21*         1.21*         1.10*           MINTA         1.22*         1.24*         1.21*         1.21*           MINTA         1.24*         1.25*         1.24*         1.21*           MINTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Personnel<br>Grade | PP-1083 | FF-1065 | PF-1084       | PF-1090 | FF-1091 | FF-1097               | PF-1094 | FF-1085               | FF-1092 | FF-1081      | PF-1097 | FF-1075 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|---------|---------------|---------|---------|-----------------------|---------|-----------------------|---------|--------------|---------|---------|
| 1.65*  2.44* 4.28*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.81*  1.8 | ENS                |         |         |               |         |         |                       |         | 1.31*                 |         |              |         |         |
| 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LT.                |         |         |               | 1.65*   |         |                       |         |                       |         |              |         |         |
| 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ENFN               |         |         |               |         |         |                       |         |                       |         |              |         | -       |
| 1.87 1.87 1.87 1.88 1.189 1.189 1.189 1.189 1.189 1.189 1.181 1.181 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.191 1.19 | EN3                |         |         | 2.44*<br>2.11 |         |         |                       |         | 1.81#                 |         |              |         |         |
| 1.87 1.87 1.18 1.18 1.29 1.24 1.24 1.29 1.21 1.29 1.29 1.19 1.10 1.29 1.19 1.10 1.10 1.10 1.10 1.10 1.10 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENI                |         |         | 4.28#         |         |         |                       |         | 3.27*                 |         |              |         |         |
| 1.87 1.13* 1.13* 1.13* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.16* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1.10* 1 | EM1                |         |         |               |         |         |                       |         |                       |         |              |         |         |
| 1.13* 1.52* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15* 1.15*  | PA<br>             |         |         |               |         |         |                       |         |                       |         |              |         |         |
| 1.34<br>1.08<br>1.08       1.31<br>1.09*       1.15<br>1.23*       1.42<br>1.23*       1.42<br>1.23*       1.42<br>1.01*         1.21<br>1.21       1.23<br>1.01*       1.23*<br>1.01*       1.15<br>2.14*<br>1.68       1.15<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MMPA               |         |         |               |         |         |                       |         |                       | 1.63*   |              |         |         |
| 1.24       1.52       1.123       3.92*       1.01         1.24       1.23*       1.01       1.01         1.21       1.51       1.15       1.15         1.29       1.19       1.10*       1.21*         1.48       1.32*       1.08*       1.61*         1.16       1.23*       1.05*       1.01*         1.16       2.23*       1.08*       1.91*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MMPN               |         | 1.87    |               |         | 1.31    |                       |         | 1.79                  |         |              |         |         |
| 1.21 1.61 1.61 1.01 1.01 1.01 1.01 1.01 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MM3                |         | 1.48    |               | 1.52    |         | 1.15                  |         |                       | 1.42    |              |         | 1.14    |
| 1.21       1.15       1.15       1.19       1.10       1.21       1.39       1.41*       1.68       1.68       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . MM2              |         | 1.24    |               |         | 1.23    |                       |         | 3.92 <b>*</b><br>1.01 |         |              |         |         |
| 1.29 1.29 1.19 1.10 1.21 1.48 1.48 1.15 1.16 1.15 1.10 1.116 1.21 1.32 1.08 1.16 1.16 1.21 1.38 1.41 1.48 1.51 1.19 1.108 1.21 1.35 1.35 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MM1                | 1.21    | 1.61    |               |         |         |                       |         |                       |         |              |         |         |
| 1.29 1.19 1.19 1.10 1.21 1.41 1.41 1.41 1.41 1.41 1.41 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MML                |         |         |               |         |         | -                     |         |                       |         |              | 1.01    |         |
| 1.29 1.19 1.10 2.14** 1.68 1.32 1.32 1.05** 1.08 1.16 1.16 2.23* 2.36*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTFR               |         |         |               |         |         |                       | 1.15    |                       |         |              |         |         |
| 1.29 1.10 1.21 1.39 1.418 1.418 1.418 1.418 1.418 1.35 1.05* 1.08 1.51 1.35 1.35 1.35 1.35 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTFA               |         |         |               |         |         |                       |         |                       |         |              |         | 1.07    |
| 1.48 1.32 1.08<br>1.05* 1.08<br>1.16 2.23* 1.91*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BTPN               |         | 1.29    |               |         | 1.19    | 1.10<br>2.14*<br>1.68 | 1.21    |                       |         | 1.39<br>1.41 |         | 1.14    |
| 2.23*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | втз                |         | 1.48    |               |         |         | 1.32<br>1.05#<br>1.10 |         | 1.08                  |         |              | 1.61    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTZ                | 1.16    |         |               |         |         |                       |         |                       |         | 1.91#        |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | вті                |         |         |               |         |         | 2.23*                 |         |                       |         |              |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTC                |         |         |               |         |         | 2.36*                 |         |                       | ,       |              |         |         |

in the DND averages. Also, the DND averages represent a logar-ithmic average of the measured data whereas the ESL averages represent an arithmetic average; thus a one to one correspondence between the two averages should not be expected. Grades with average noise exposures in excess of 100% are marked with an asterisk in Table 4-7.

# 4.3.2 Personnel Noise Exposure Results using Individual Location Noise Data Averaged over the 12 Sample Ships for Each Location

For these results, all noise level measurements for a particular location in each of the 12 ships were averaged. These average noise levels were then used with the personnel assignment data to calculate both individual and grade average noise exposure results. The grade average results are included in Table 4-8 and the individual results are contained in Appendix G. As there is considerable scatter in the data from one sample ship to another, no one sample ship can be used to represent the class; thus these ship averaged results are useful for the purpose of estimating likely average noise exposures for personnel working on this class of ship in the auxiliary steaming condition.

# 4.3.3 Personnel Noise Exposure Results using Sub-Area Averages for the Noise Level Data

For the results in this section, noise levels measured at individual locations in the same sub-area were averaged on an energy basis (rather than a dBA basis). The energy basis was chosen as it gives results similar to those which would be obtained if the averaging were done on site using a sound level meter. These average levels were then used together with the personnel assignment data to calculate noise exposures. The sub-areas used and the individual locations included in each sub-area are listed in Table 4-9.

WAR AND STREET STREET

Table 4-8. Grade Average Personnel Noise Exposure and Impact for all 12 Ships: Sound Levels Averaged at Individual Locations over all 12 Ships

Threshold Level = 80.0 dBA 8-Hr Permissible Level = 90.0 dBA Exchange Rate = 5 dBA

|                                                                                                                                                                                                         | Exchang                                                                                                                                                | C Mate                               |                                                                        | ים טילוי                                                                  | <b>.</b>                                                                                             |                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade<br>Code                                                                                                                                                                                           | Grade<br>Description                                                                                                                                   | No. of<br>Pers.                      | Sound<br>Mean                                                          | Level<br>S.D.                                                             | Daily Noi<br>Mean                                                                                    | se Dose<br>S.D.                                                                                                                                                         |
| 506<br>503<br>505<br>303<br>402<br>408<br>107<br>108<br>107<br>206<br>207<br>108<br>107<br>206<br>209<br>103<br>103<br>103<br>103<br>104<br>604<br>107<br>204<br>604<br>107<br>206<br>404<br>607<br>604 | ENFN EN1 EN3 FA EM1 EMC MMFR BTFA BTFN BTFR BT3 MMFA MM1 MMFN MM2 MM3 MMC MM BT2 ENS BTC BT1 FN EN2 EMFN EN2 EMFN EM2 LT FR LTJG BT EM3 BTCM EM6S LDCR | 257331192555300635245729134628261111 | 9991.2597577967695915552890158112199* ******************************** | 0578400675619046753736200678702000** 0578400675619046753736200678702000** | 1.65<br>1.27<br>1.08<br>1.27<br>1.08<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09 | 2.34<br>.688<br>1.442<br>0.000<br>4.422<br>.534<br>.588<br>.430<br>.511<br>.438<br>.431<br>.700<br>.792<br>.471<br>.366<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000 |
| ALL PER                                                                                                                                                                                                 | RSONNEL                                                                                                                                                | 385                                  | 85.5                                                                   | 5.0                                                                       | 0.62                                                                                                 | 0.45                                                                                                                                                                    |

Table 4-9 Sub-Areas used for Noise Level Averages

| Sub-Area                     | Locations Included                                     |
|------------------------------|--------------------------------------------------------|
| ELT-Eng. Room, Lower Level   | EL1B, EL2B, EL3, EL4, EL5,<br>EL6, EL7                 |
| EUT-Eng. Room, Upper Level   | EU1W, EU2B, EU3, EU4, EU5,<br>EU6, EU7, EU8            |
| EST-Eng. Room, Second Deck   | ES1W, ES2, ES3, ES4                                    |
| FLT-Fire Room, Lower Level   | FL1W, FL2B, FL3B, FL4, FL5, FL6, FL7, FL8, FL9, FL10   |
| FUT-Fire Room, Upper Level   | FU1W, FU2W, FU3B, FU4, FU5,<br>FU6, FU7,FU8, FU9, FU10 |
| FST-Fire Room, Second Deck   | FS1, FS2, FS3                                          |
| ALT-Aux. Room 1, Lower Level | AL1, AL2, AL3, AL4, AL5,<br>AL6, AL7                   |
| AUT-Aux. Room 1, Upper Level | AU1B, AU2B, AU3, AU4, AU5,<br>AU6, AU7, AU8            |
| XRT-Aux. Room 2              | X1W, X2, X3, X4W, X5, X6                               |
| FAT-FDB Room 1A              | FA1, FA2, FA3                                          |
| FBT-FDB Room 1B              | FB1, FB2, FB3                                          |
| ST-After Steering            | S1W, S2B, S3, S4                                       |

The purpose of calculating noise exposures with space-averaged noise levels was to determine whether specifying sub-areas or general areas rather than exact locations for personnel assignments gives noise exposure results which are just as accurate.

# 4.3.3.1 Individual Personnel Exposure Results

Daily noise doses and equivalent sound levels were calculated for each individual surveyed on all 12 ships, using sub-area space-average noise levels; that is, personnel assignments for locations in the same sub-area were allocated the same noise levels. The data are included in Appendix H and personnel with dar noise doses greater than one are listed in Table 4-10. It is clear that there is still a large amount of scatter in the the personnel grades which are overexposed; however, the amount of overexposure is reasonably consistent, with daily noise doses between 1 and 2 for 74 out of the 89 personnel overexposed and between 2 and 4 for the remainder.

# 4.3.3.2 Grade Average Personnel Exposure Results

The individual personnel noise exposure data calculated in 4.3.3.1 above were averaged for each personnel grade on each ship. The detailed results are included in Appendix I. Grades with average daily noise doses in excess of 1.0 are marked with an asterisk in Table 4-10.

# 4.3.4 Personnel Noise Exposure Results Using Noise Data Averaged over Sub-Areas and all 12 Ships

For these results, noise level measurements in particular subareas (see Table 4-9) in all 12 ships were averaged and then used with the personnel work assignment data to calculate individual personnel noise exposures which are included in Appendix J. The individual results for each grade of personnel were then averaged to obtain the grade averages which are listed in Table 4-11.

| Personnel<br>Grade                        | PP-1083 | PP-1083 FP-1065 | FF-1084 | FF-1090 | FF-1091 | PF-1097              | PP-1094 | FF-1085                       | FF-1092 | FF-1081                      | FF-1097 FF-1075              | PP-1075 |
|-------------------------------------------|---------|-----------------|---------|---------|---------|----------------------|---------|-------------------------------|---------|------------------------------|------------------------------|---------|
| ENS                                       |         |                 |         |         |         |                      |         | 1.31                          |         | 1.03                         |                              |         |
| 5                                         |         |                 |         | 1.65    |         |                      |         |                               |         | 1.13                         |                              |         |
| ENTH                                      |         |                 |         |         |         |                      |         | 2.940                         |         |                              |                              |         |
| EN3                                       |         |                 | 1.95    |         |         |                      |         | # · 00                        |         |                              |                              |         |
| ENI                                       |         |                 | 3.52    |         |         |                      |         | 3.27                          |         |                              |                              |         |
| SM2                                       |         |                 | 1.16    |         |         |                      |         |                               |         |                              |                              |         |
| SHIPN                                     |         |                 |         |         |         |                      |         | 2.61                          |         |                              |                              |         |
| 2                                         |         |                 |         |         |         |                      |         | 2.61                          |         |                              |                              |         |
| MMPA                                      |         |                 |         |         |         |                      |         |                               | 1.6     |                              |                              |         |
| N. J. |         | 1.87*           |         |         | 1.12    |                      |         | 1.08                          | 1.67    |                              |                              |         |
| 11113                                     |         | 1.48            |         | 1.09    |         | 1.15                 |         | 1.32                          | 1.03    |                              |                              |         |
| 2                                         |         | 1.21            |         |         |         |                      |         | 3.92                          |         |                              |                              |         |
|                                           | 1.02    | 1.30            |         |         |         |                      |         | 7.00                          |         |                              |                              |         |
| JHLC<br>HHC                               |         |                 |         |         | 1.16    |                      |         | 1.53                          |         |                              | 1.01                         |         |
| ħ                                         |         |                 |         |         |         |                      |         | 1.12                          |         |                              |                              |         |
| BTPR                                      |         |                 |         |         |         |                      | 1.02    |                               |         |                              |                              |         |
| BTFA                                      | 1.04    |                 |         |         |         | 1.89*                | 1.03    | 1.124                         |         |                              |                              | 1.07    |
| BTFN                                      |         |                 |         |         | 1.19    | 1.10<br>1.68<br>1.08 | 1.03    |                               |         | 1.29                         | 1.02                         |         |
| BT3                                       |         | 1.19            |         |         |         | 1.12<br>2.04<br>1.61 | 1.01    | 2.86<br>1.36*<br>1.12<br>1.97 |         | 1.04<br>1.04<br>1.04<br>1.04 | 1.19<br>1.15<br>1.23<br>1.23 | 1.07    |
| втг                                       | 1.37    |                 |         |         |         | 1.06                 | 1.03    |                               | 1.22    | A 1.1.1.4                    | 1.75                         | 1.07    |
| BT1<br>BTC                                |         |                 |         |         |         | 2.23                 | 1.02    | 1.09                          |         |                              |                              |         |
|                                           |         |                 |         |         |         |                      |         |                               |         |                              |                              |         |

· grade average noise dose greater than 1.0

Table 4-11. Personnel Noise Exposure and Impact Grade Averages for all 12 Ships: Sound Levels Averaged over Sub-Areas and All 12 Ships

Threshold Level = 80.0 dBA 8-Hr Permissible Level = 90.0 dBA Exchange Rate = 5 dBA

# 4.3.5 Personnel Noise Exposure Results Using General Area Averages for the Noise Level Data

For the exposure results discussed here, the noise level data measured in individual locations and sub-areas located in the same general area were averaged on an energy basis. The general areas used and the individual locations and sub-areas included in each are listed in Table 4-12.

Table 4-12 General Areas Used for Noise Level Averages

| General Area        | Locations Included                                                                                                                                   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERT-Engine Room     | EL1B, EL2B, EL3, EL4, EL5,<br>EL6, EL7, EU1W,<br>EU2B, EU3, EU4, EU5, EU6, EU7,<br>EU8, ES1W<br>ES2, ES3, ES4, ELT, EUT, EST                         |
| FRT-Fire Room       | FL1W, FL2B, FL3B, FL4, FL5,<br>FL6, FL7, FL8, FL9, FL10,<br>FU1W, FU2W, WU3B, FU4, FU5,<br>FU6, FU7, FU8, FU9, FU10,<br>FS1, FS2, FS3, FLT, FUT, FST |
| ART-Aux.Room 1      | AL1, AL2, AL3, AL4, AL5,AL6,<br>AL7,<br>AU2B, AU3, AU4, AU5, AU6, AU7,<br>AU8, ALT, AUT                                                              |
| XRT-Aux.Room 2      | X1W, X2, X3, X4W, X5, X6                                                                                                                             |
| FABT-FDB Room 1A/1B | FA1, FA2, FA3, FB1, FB2, FB3, FAT, FBT                                                                                                               |
| ST-After Steering   | S1W, S2B, S3, S4                                                                                                                                     |

water the same

# 4.3.5.1 Individual Personnel Exposure Results

Daily noise doses and equivalent sound levels were calculated for each individual surveyed on all twelve ships, using general area space average noise levels; that is, personnel assignments for locations in the same general area were allocated the same noise levels which were determined by energy averaging all the individual measurements in that area. The data are included in Appendix K and personnel with daily noise doses in excess of one are listed in Table 4-13. There is still a large amount of scatter in the data from ship to ship and among personnel in the same grade. Out of the 99 personnel overexposed, 80 have daily noise doses between one and two and the remainder have DNDs between 2 and 4.

# 4.3.5.2 Grade Average Personnel Exposure Results

The individual noise exposure data calculated in 4.3.5.1 above were averaged for each personnel grade on each ship. The detailed results are included in Appendix L. Grades with average daily noise doses in excess of 1.0 are marked with an asterisk in Table 4-13.

# 4.3.6 Personnel Noise Exposure Results Using Noise Levels Averaged over General Areas and All 12 Ships

For these results, noise level measurements in particular general areas (see Table 4-12) in all twelve sample ships were averaged and then used together with the personnel work assignment data to calculate individual noise exposures which are included in Appendix M. The individual noise exposure results for each grade of personnel were then averaged to obtain the grade averages which are listed in Table 4-14.

\* grade average noise dose greater than 1.0

| Personnel<br>Grade | 1<br>PF-1083 | PP-1065 | PP-1084 | PF-1090 | FF-1091 | PP-1097                       | PP-1094 | FP-1085             | PP-1092 | PP-1081 | PP-1097      | PP-1075 |
|--------------------|--------------|---------|---------|---------|---------|-------------------------------|---------|---------------------|---------|---------|--------------|---------|
| ENS                |              |         |         |         |         |                               |         | 1.31                |         | 1.03    |              |         |
| Į.                 |              |         |         | 1.65 *  |         |                               |         |                     |         | 1.13    |              |         |
| ENPN               |              |         |         |         |         |                               |         | 2.94 #              |         |         |              |         |
| EN3                |              |         | 1.95    |         |         |                               |         | 4.12 *              |         |         |              |         |
| ENI                |              |         | 3.52    |         |         |                               |         | 3.27                |         |         |              |         |
| EM2                |              |         | 1.13    |         |         |                               |         |                     |         |         |              |         |
| EMI                |              |         |         |         |         |                               |         |                     |         |         |              |         |
| EMPN               |              |         |         |         |         |                               |         | 2.61                |         |         |              |         |
| Y.                 |              |         |         |         |         |                               |         | 2.61                |         |         |              |         |
| MMPA               |              |         |         |         |         |                               |         | 1.23                | 2.02    |         |              |         |
| MMPN               |              | 1.7     |         |         |         |                               |         | 1.21                | 1.23    | 1.34    |              |         |
| MM3                |              | 1:13    |         | 1.52    |         |                               | 1.03    | 1.63                | 1.03    |         |              | 1.18    |
| MM2                |              | 1.26    |         |         |         |                               |         | 3.92                | 1.42    |         |              |         |
| Œ                  | 1.13         | 1.95    |         |         | 1.09 *  |                               |         |                     |         | 1.04    |              |         |
| MMC                |              | 1.09    |         |         | 1.16    |                               |         | 1.64 *              |         |         | 1.01         |         |
| FG.                |              |         |         |         |         |                               | -       | 1.12                |         |         |              |         |
| BTFR               |              |         |         |         |         |                               | 1.01    | :                   |         |         |              |         |
| BTPA               |              |         |         |         |         | 1.99                          | 1.01    | 1.12                |         |         |              | 1.07    |
| Nation             |              |         |         |         |         | 1.06<br>2.23 <b>*</b><br>1.62 |         |                     |         | 1.22    | 1.02         | 1.07    |
| втз                |              | 1.14    |         |         |         | 2.23<br>1.87 *<br>1.64        |         | 2.0<br>1.15<br>1.12 |         | 1.13 •  | 1.28<br>1.28 | 1.07    |
| BT2                | 1.08         |         |         |         |         | 1.06                          | 1.01    | 2.01                | 1.22    | 1.69    | 1.75         | 1.07    |
| BT1                |              |         |         |         |         | 2.23 #                        | 1.01    | 1.36 #              |         |         |              |         |
| BTC                |              |         |         |         |         | 2.23 *                        |         |                     |         |         |              |         |
|                    |              |         |         |         |         |                               |         |                     |         |         |              |         |

Table 4-14. Personnel Noise Exposure and Impact Grade Averages for all 12 Ships: Sound Levels Averaged over General Areas and All 12 Ships

Threshold Level = 80.0 dBA 8-Hr Permissible Level = 90.0 dBA Exchange Rate = 5 dBA

|                                                                                                                            |                                                                                                                                                | _                             |                                                                                  |                                               |                                                                                                                                                                    |                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Grade                                                                                                                      | Grade                                                                                                                                          | No. of                        | Sound Level                                                                      |                                               | Daily Noise Dose                                                                                                                                                   |                                                                                                                                              |
| Code                                                                                                                       | Description                                                                                                                                    | Pers.                         | Mean                                                                             | S.D.                                          | Mean                                                                                                                                                               | S.D.                                                                                                                                         |
| 506<br>507<br>304<br>108<br>108<br>108<br>108<br>108<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109 | ENFN EN3 EN1 FA BT2 EM1 BT3 BTFR BTFN MMFR BTFA MM1 MMC EMC BTI BTCM MM2 MMCS BT MMFN BTC MMFN EMFN ENS MM FN LT EM2 EM2 EM3 LTJG FR EMFA LDCR | 27534355219051213352964168211 | 94.206.57.35.32.73.796.590.44.01.12.37.397.98.888.888.888.888.888.888.888.888.88 | 4316373750535050350047431.4045500<br>10055300 | 2.02<br>1.71<br>1.55<br>1.17<br>1.00<br>.96<br>.99<br>.87<br>.85<br>.85<br>.82<br>.70<br>.70<br>.70<br>.69<br>.64<br>.61<br>.59<br>.45<br>.33<br>.26<br>.23<br>.13 | 1.20<br>.840<br>.840<br>.840<br>.840<br>.941<br>.613<br>0.439<br>0.360<br>0.372<br>0.009<br>.3554<br>.157<br>.490<br>0.100<br>0.100<br>0.000 |
| ALL PERS                                                                                                                   | ONNEL                                                                                                                                          | 385                           | 87.0                                                                             | 4.4                                           | 0.82                                                                                                                                                               | 0.41                                                                                                                                         |

### 4.4 Summary of Noise Exposure Results

The variability in the personnel noise exposure results among personnel in the same grade and among ships is dependent upon the variability in both the sound level data and the personnel assignment data. The variability in both of these quantities has been discussed in detail in preceding sections and was found to be relatively large. The personnel noise exposure results are affected more by the variability in personnel assignment data than by the variability in noise level data. As expected, the large variability in the personnel assignment data leads to a similarly large variability in the noise exposure data among personnel in the same grade on the same ship and also among different ships.

To begin with, noise exposures were calculated for each individual sampled on each ship, using specific noise data for each assigned location. The results showed a considerable amount of scatter both among ships and among personnel in the same grade on any given ship. To obtain results which may be used to characterize this type of ship in the auxillary steaming condition, the equivalent sound level results for all 12 ships were averaged arithmetically for each personnel grade. Additional personnel exposure and equivalent sound level calculations were performed using both sub area average and area average noise levels (obtained by averaging noise level data over specified locations in each area). The purpose of these calculations was to determine whether or not the variance in the exposure results would be reduced and whether or not better agreement would be obtained with the dosimeter data. This latter subject is addressed more fully in the next section.

The preceding results showed that sub-area and general area averaging of the noise levels prior to the exposure calculations reduced slightly the overall standard deviation of the personnel

equivalent noise levels (see Tables 4-8, 4-11 and 4-14). The same tables showed that the mean equivalent noise level for all personnel increased slightly as the noise level averaging became more general. Averaging of noise levels by sub-area had only a slight effect on the rank ordering of the personnel grades by exposure; averaging noise levels by general area had a further slight effect. Grades which were identified as having an average DND in excess of 1.0 when no noise level averaging was used were still identified when the noise levels were area averaged. However, noise level averaging did cause the original number of personnel grades identified as having an average DND in excess of 1 to increase from 4 to 6. The total number of personnel identified as being overexposed when ships and personnel were considered on an individual basis are listed in Table 4-15 below.

Table 4-15 Number of Personnel Overexposed Expressed as a Percentage of the Total Number Surveyed; Individual Basis, No Noise Level Averaging Over Ships.

|                      | No Averaging<br>of Sound Levels | Sub Area<br>Averaging of<br>Sound Levels | General Area<br>Averaging of<br>Sound Levels |
|----------------------|---------------------------------|------------------------------------------|----------------------------------------------|
| DND in excess of 1.0 | 12.7%                           | 23.1%                                    | 25.7%                                        |
| DND in excess of 2.0 | 2.1%                            | 2.9%                                     | 3.9%                                         |
| DND in excess of 3.0 | 0.8%                            | 1.0%                                     | 1.0%                                         |

The results in Table 4-15 show that averaging of noise levels increases the number of personnel identified as being overexposed when the exposure data are considered on an individual basis.

When the noise level results are averaged over all 12 ships and then used to calculate the noise exposures on an individual basis, the number of personnel identified as being overexposed increases (see Table 4-16 below). Averaging the noise levels by sub area further increases the number of personnel identified as being overexposed; however further averaging of noise levels by general area has an insignificant effect.

Table 4-16 Number of Personnel Overexposed Expressed as a Percentage of the Total Number Surveyed on an Individual Basis -- Location Noise Levels Averaged over all 12 Ships.

|                      | No Averaging of Sound Levels | Sub Area<br>Averaging of<br>Sound Levels | General Area<br>Averaging of<br>Sound Levels |
|----------------------|------------------------------|------------------------------------------|----------------------------------------------|
| DND in excess of 1.0 | 17.7%                        | 28.8%                                    | 28.1%                                        |
| DND in excess of 2.0 | 1.6%                         | 2.3%                                     | 2.3%                                         |
| DND in excess of 3.0 | 0.3%                         | 0.3%                                     | 0.3%                                         |

The first question we need to address is: Which of the results more truly reflect the noise exposure problem? Clearly the individual results shown in Table 4-15 are very sensitive to errors in individual personnel assignment data. When area averaging of noise levels is used, errors in individual personnel assignment data become less important. However, area averaging of noise levels can cause errors when noise environments of widely different on a systemmatic basis rather than a random basis. This latter reason is probably responsible for the increase in number of personnel overexposed when area averaging of noise levels is used.

market of the second

Averaging noise levels for each location over all 12 sample ships provides a more accurate picture of the noise environment to which personnel are exposed on average, provided there are no systemmatic differences between ships — this was shown to be the case in Section 4.2.1.

The next question which arises is: Should personnel be averaged by grade or would an average over all personnel be preferable?

The ship average by grade results for the case of no area averaging of sound levels are listed in Table 4-8 and show that where more than one sample existed in the same grade, the standard deviation in equivalent sound level for these samples varied from 2.0 to 9.8 dBA, whereas the standard deviation in equivalent sound levels for all personnel was 5 dBA. Referring again to Table 4-8 we note that the range of average equivalent sound level values among different personnel grades with a sample size of at least 10 is only about 5 dBA and only 3 dBA for sample sizes greater than 12. On the other hand the standard deviations for these grades range from 3.6 to 6.9. It follows that the overlap of equivalent sound level values from one grade to another is very large, suggesting that separating personnel into grades for the exposure computations is not worthwhile. Instead, all personnel should be combined together, and average and standard deviations computed for the exposure, at least when the ships are in the auxiliary steaming condition. This would require fewer measurements, for similar accuracy, than if personnel grades are treated separately. Of interest therefore, is the number of sample ships required and the number of personnel which should be sampled on each ship to obtain a given accuracy in the overall mean equivalent sound level, when the ship is in the auxiliary steaming condition.

First of all we will estimate the number of ships which should be sampled to provide  $\pm 1$  dBA,  $\pm 2$  dBA and  $\pm 3$  dBA accuracy for the average equivalent sound level results. One way of assessing the variation from ship to ship is in terms of a coefficient of variation  $\epsilon$ , given by

$$\varepsilon = s/x$$
 (4.7)

where s = standard deviation of the sample values from one ship to another

x = mean value for all ships in the sample.

The coefficients of variation for all three cases for which ESLs were calculated are listed in Table 4-17 below.

Table 4-17. Coefficients of Variation for ESL Values for the Sample Ships

| Case Description                           | Cc fficient of Variation |
|--------------------------------------------|--------------------------|
| No area averaging of noise level data      | 0.025                    |
| Sub area averaging of noise level data     | 0.026                    |
| General area averaging of noise level data | 0.029                    |

The average 90% confidence limits for a given accuracy in results may be approximated by

90% CL = 
$$x\left(1\pm t\varepsilon/\sqrt{\eta}\right)$$
 (4.8)

where n is the number of sample ships and t is the value of the 90% point on the student t distribution corresponding to the sample size chosen.

The preceding expression may be used to estimate the number of sample ships required to obtain a  $\pm 1$  dBA,  $\pm 2$  dBA and  $\pm 3$  dBA accuracy in the equivalent sound level estimate. These results are summarized in Table 4-18 below.

Table 4-18. Minimum Number of Ships To Be Sampled for +3 dBA, +2 dBA and +1 dBA Accuracy in the Average ESL Computation.

| Case Description                           | ±3 dBA<br>Accuracy | ±2 dBA<br>Accuracy | ±1 dBA<br>Accuracy |
|--------------------------------------------|--------------------|--------------------|--------------------|
| No area averaging of noise level data      | 3                  | 4                  | 14                 |
| Sub area averaging of noise level data     | 3                  | 5                  | 15                 |
| General area averaging of noise level data | 4                  | 6                  | 18                 |

A similar calculation may be used to estimate the number of personnel which must be sampled on each ship to obtain a  $\pm 3$  dBA,  $\pm 2$  dBA and  $\pm 1$  dBA accuracy in the average ESL computation. The coefficients of variation  $\epsilon$  are calculated using Equation 4.7 for each ship and are listed in Table 4-19. The average value at the bottom of the table is calculated using

$$\varepsilon_{av} = \left[\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2}\right]^{\frac{1}{2}}$$
(4.9)

Equation 4.8 is then used with  $\epsilon$  to calculate with 90% confidence the average number of personnel to be sampled on each ship for a  $\pm 1$  dBA,  $\pm 2$  dBA and  $\pm 3$  dBA accuracy in the average ESL results. The total number of sample personnel required for  $\pm 1$  dBA,  $\pm 2$  dBA and  $\pm 3$  dBA accuracy in the overall average ESL results is approximately equal to the product of the value in Table 4-20 and the corresponding value in Table 4-18.

The results show that sufficient ships and sufficient personnel on each ship were sampled to obtain a  $\pm 1.5$  dBA accuracy in the overall average equivalent sound level estimate; better results would be obtained by sampling more personnel on each ship and less ships.

Thus we can conclude with 90% confidence that the overall average equivalent sound level estimate of 85.5 dBA is within 1.5 dBA of the true value. However the variation among personnel is large, as indicated by the standard deviation value of 5 dBA for the case of no area averaging of the sound level results. The maximum variation around the mean was measured at ±15 dBA.

Table 4-19. Coefficients of Variation for ESL Values for Personnel in Each of the 12 Sample Ships

| Ship<br>Number           | No Averaging of Sound Levels | Sub Area Averaging of Sound Levels | General Area<br>Averaging of<br>Sound Levels |
|--------------------------|------------------------------|------------------------------------|----------------------------------------------|
| FF-1083<br>USS Cook      | 0.079                        | 0.060                              | 0.052                                        |
| FF-1065<br>USS Stein     | 0.069                        | 0.054                              | 0.096                                        |
| FF-1085<br>USS Candless  | 0.108                        | 0.083                              | 0.080                                        |
| FF-1090<br>USS Ainsworth | 0.062                        | 0.052                              | 0.054                                        |
| FF-1091<br>USS Miller    | 0.071                        | 0.047                              | 0.049                                        |
| FF-1097<br>USS Moinester | 0.079                        | 0.066                              | 0.060                                        |
| FF-1094<br>USS Pharris   | 0.072                        | 0.063                              | 0.063                                        |
| FF-1085<br>USS Beary     | 0.058                        | 0.059                              | 0.057                                        |
| FF-1092<br>USS Hart      | 0.086                        | 0.071                              | 0.192                                        |
| FF-1081<br>USS Aylwin    | 0.043                        | 0.047                              | 0.039                                        |
| FF-1097<br>USS Moinester | 0.071                        | 0.091                              | 0.060                                        |
| FF-1075<br>USS Trippe    | 0.045                        | 0.029                              | 0.035                                        |
| OVERALL E                | 0.072                        | 0.062                              | 0.081                                        |

The preceding statistical analyses were based on equivalent sound levels rather than daily noise doses. However any conclusions can be applied equally well to the daily noise dose data.

Table 4-20. Minimum Number of Personnel To Be Sampled on Each Ship for +3 dBA, +2 dBA and +1 dBA Accuracy in the Average ESL Computation.

| Case Description                           | ±3 dBA<br>Accuracy | ±2 dBA<br>Accuracy | ±1 dBA<br>Accuracy |
|--------------------------------------------|--------------------|--------------------|--------------------|
| No area averaging of noise level data      | 13                 | 26                 | 100                |
| Sub area averaging of noise level data     | 10                 | 20                 | 74                 |
| General area averaging of noise level data | 16                 | 34                 | 130                |

# 4.5 Comparison of Dosimetry Data with Calculated Noise Exposure Data

The dosimeter data for 37 specific personnel were directly identified with computer calculations of their ESL exposure (the other 12 personnel producing dosimeter data could not be identified with specific calculations because of inadequate records of their locations). Comparisons between the dosimeter data and computer calculated ESL and DND data were then made in the following categories.

manifest and the second

- 1. Using the 37 individuals with directly matched dosimeter data and computer calculations, the differences between the dosimeter and computer equivalent sound levels were calculated using compute. calculations based upon:
  - (a) sound levels at individual locations,
  - (b) average sound levels on each level of each engineering area (subarea average), and
  - (c) average sound levels in each engineering area (general area average)
- 2. Using the 48 individuals for which dosimeter data are available, the individuals were pooled by grade and the average dosimeter reading for each grade was computed. The differences between the grade averaged dosimeter data and similar computer model averages were calculated using computer calculations based upon:
  - (a) sound levels at individual locations on individual ships,
  - (b) sound levels at individual locations averaged over all 12 ships.
  - (c) average sound levels on each level of each engineering area on individual ships,
  - (d) average sound levels on each level of each engineering area averaged over all ships,
  - (e) average sound levels in each engineering area on individual ships, and

(f) average sound levels in each engineering area averaged over all ships.

The differences computed in the above comparisons were reduced to a mean and standard deviation by

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
  $s = \left[ \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right]^{1/2}$  (4-10)

where  $x_1$  = difference between the dosimeter ESL and the corresponding computer predicted ESL.

The results of the comparison studies are summarized in Table 4-21.

The detailed results are included in Appendix N.

The best agreement between the noise exposure calculations and the dosimeter data is expected when comparisons are made on an individual basis, using noise levels with no area averaging. The data in Table 4-21 shows that this is not so. The main reason for the discrepancies is lack of accuracy in the definition of an individual's location assignments and the amount of time spent in each. This lack of accuracy shows up particularly when an individual spends most of his time in a relatively quiet environment and occasionally spends a small amount of time in a noisy environment. In this case a small error in location assignment is magnified tremendously in the daily noise dose and equivalent sound level results leading to large errors in these quantities. These large errors are particularly apparent in several cases where the discrepancy between the calculated ESL and the dosimeter data exceeds 10 dBA. It is clear in future that personnel need to be questioned more closely to obtain a more accurate picture of their location assignments and times.

One way of reducing the need for accurate location and assignment time data is to average noise levels over sub areas (or levels) or average noise levels over general areas (see Tables 4-9 and 4-12 respectively for locations which are included in each average). As can be seen in Table 4-21 this noise level averaging procedure significantly reduces the average difference between the dosimeter results and the calculated ESL results. However the standard deviation is not significantly reduced, indicating that a similar scatter in the difference on an individual basis still exists. Note that the general area average offers no improvement over the sub area average.

The effect of averaging results over grades before taking the difference between the dosimeter data and calculated ESL data is also shown in Table 4-21. It can be seen that when the results are considered on a ship-by-ship basis the average difference (or error) is smaller than when the data for all 12 sample ships are averaged before taking the difference; however the standard deviation (or scatter in results for individual grades) does not change significantly. The effect of averaging noise levels over sub areas and general areas is also shown in the table for the grade average results. The average error (or difference) decreases as the noise levels are averaged on a broader basis. However the standard deviation (or scatter) in the results does not change significantly.

We may conclude the following for the dosimeter and calculated ESL data comparisons.

1. The differences between the calculated ESL data and dosimeter data are large and may be attributed mainly to errors in both the location assignments and assignment times to each location for individual personnel. When the large differences in location noise levels,

Table 4-21. Summary of Equivalent Sound Level
Data Comparisons

| Grouping of Data |                    |            | ESL Error Data, dBA |     |                       |
|------------------|--------------------|------------|---------------------|-----|-----------------------|
| Personnel        | Locations          | Ships      | Sample<br>Size      |     | Standard<br>Deviation |
| Individual       | Individual         | Individual | 37                  | 4.0 | 7.3                   |
|                  | Subarea<br>Average | Individual | 37                  | 0.1 | 5.9                   |
|                  | Area<br>Average    | Individual | 37                  | 0.7 | 5.8                   |
| Grade<br>Average | Individual         | Individual | 22                  | 2.1 | 6.3                   |
|                  |                    | Average    | 11                  | 5.7 | 4.2                   |
|                  | Subarea<br>Average | Individual | 22                  | 0.8 | 5.9                   |
|                  |                    | Average    | 11                  | 2.1 | 4.5                   |
|                  | Area<br>Average    | Individual | 22                  | 0.3 | 5.9                   |
|                  |                    | Average    | 11                  | 1.9 | 4.1                   |

the calculated ESL, particularly when an individual spends the majority of his time in a quiet area. Some differences may also be attributable to intermittent noise, such as metal to metal impacts or shouting by the wearer, being accumulated by the dosimeter but not taken into account in the calculated data.

- 2. Averaging noise levels over sub areas reduces the average difference or mean error but does not reduce the standard deviation or large scatter in the individual differences.
- 3. Averaging noise levels over general areas rather than sub areas offers no significant improvement.
- 4. Averaging data for personnel grades or averaging over ships does not improve the results.

#### 5.0 STRUCTURE OF SHIPBOARD NOISE DATA MANAGEMENT SYSTEM

### 5.1 Summary of Results and Model Limitations

The proposed means of validating the data management system was to compare dosimetry data with noise exposure results calculated from location noise level data and personnel assignment data for Knox Class ships operating in the auxiliary steaming condition. These comparisons were made first of all on an individual basis, with no area averaging of the noise level data for the purposes of calculating the exposures. Most of the discrepancies between the dosimetry data and the calculated data can be attributed to the following factors:

- (a) The personnel assignment data were not sufficiently accurate, especially when personnel were assigned to quiet locations for long periods of time and occasionally spent time in noisy locations.
- (b) The calculation procedure does not take into account such things as conversation or shouting and possible intermittent banging of tools on hard surfaces.
- (c) The dosimeter data may be inaccurate due to the close location of the microphones with respect to the personnel carrying them.
- (d) Measured noise levels were very close to the inreshold level of 90 dBA below which exposure was not accumulated. Thus small variations in noise level produced large variations in the dosimeter data. This problem was somewhat alleviated for the noise exposure calculations (from the sound level and assignment data) by using an 80 dBA threshold.

In an attempt to reduce the difference error between dosimeter data and calculated ESLs, noise level data were averaged over sub areas or levels (see Table 4-9). This reduced the average difference between dosimeter results and calculated results to an insignificant amount, but the variations on an individual basis were still large, as indicated by the large numbers for the standard deviation in Table 4-19. Further averaging of the noise levels over general areas produced no reduction in the average difference (or error) or the standard deviation.

The choice of the auxiliary steaming condition for validation of the model was not a good one for the following reasons:

- (a) Not all personnel were on board ship during the survey times.
- (b) Description of duties for personnel within a particular grade or rate varied enormously with no clear cut trends.
- (c) Noise levels were close to the 90 dBA threshold level.
- (d) It was difficult to find ships in this condition and to schedule noise surveys as explained in Section 3.

An additional problem which led to some confusion during the data collection was the regulation change from the BUMED Instr. 6260.6b criteria to the new DOD Instr. 6055.3 criteria of 80 dBA threshold, an energy-time exchange rate of 4 dBA per halving or doubling of the exposure time and an allowable 8-hour exposure of 84 dBA.

#### 5.2 Recommendations for Further Validations

Due to the problems outlined in the previous section, the auxiliary steaming condition was not suitable for validating the

model. For this reason we suggest a further series of validating measurements, to be made on ships in the underway condition. There are several advantages to doing this as follows:

- 1. Personnel work assignments are expected to be more uniform on a daily basis and personnel in the same grade are expected to have duties which are more alike.
- 2. Noise levels will be higher and the threshold level will be 80 dBA, corresponding to the new DOD instruction; this will alleviate the problem of noise levels close to the threshold level which can cause large errors in exposure calculations for small errors in noise level measurement. Also any errors in the dosimeter threshold will become unimportant.
- 3. It should be easier to obtain the required amount of data in a relatively short time due to the lack of difficulty expected in finding ships in this condition.
- 4. All personnel are expected to be present on the ship and should be easier for the survey personnel to find.

The results for the auxiliary steaming condition showed that little benefit was gained by separating individuals into grades or rates and some significant benefit was gained by averaging noise levels in the same sub area (see Table 4-9). However, this may not be so when the ship is in the underway condition. Thus, at least during the validation procedure, we recommend keeping personnel separated into grades and no area averaging of noise levels.

## 5.3 Conclusions and Recommendations

A review of the objectives of this study can be summarized as follows:

- Data acquisition procedurees, consistent with the requirements of the personnel noise exposure model, were developed.
- 2. These procedures were successfully adapted to current Navy (EPMU) procedures for noise data collection. It was shown that the medical units not only can accurately collect this type of information but that the time required compares favorably with present procedures.
- 3. The training and equipment available to the EPMU's is sufficient to permit the new data acquisition techniques to be implemented at all EPMU locations.
- 4. The accuracy of noise exposure predictions, using the model and the data base collected, is inconclusive. The reasons for the disagreement found are discussed in Section 5.1; the major one being the selection of the "auxiliary steaming" operational mode to validate the model. It is believed that an analysis conducted "underway" on this same class of ships would yield more significant results.
- 5. The results of the analysis point out that for ship operational conditions where the personnel noise exposure is at or very near to threshold small errors in the "personnel assignment" data parameter may result in large prediction errors. The methodology of how this data parameter is collected in the field to increase its accuracy needs to be reviewed so that the accuracy can be improved.

The apparent problem concerning the validity of noise exposure data management system and indicated by the preceding results is that personnel noise exposure may not be calculated accurately for some ship operating modes, i.e. auxiliary steaming. This conclusion may be modified, to some extent, if the corrective actions discussed under Item 5 are developed and implemented.

However, it should be noted that the noise problem for this condition was limited to only 2.6% of the personnel surveyed when the mean noise dose is considered (see Tables 4.8, 4.11 and 4.14). Thus, the importance of this operational mode to the yearly individual noise exposure (when the exposure and time spent for all other operational modes is included) most probably will not be very substantial. It should be noted that this conclusion may not be true for all ship classes.

Finally, the preceding results and analysis showed that the personnel grade description was inconsequential to the noise exposure picture. That is, no specific personnel grade could be identified as being more exposed to noise than another (rank-ordering of grades by exposure). The ability to distinguish among grades is believed to be important in comparison with audiometric data as part of the general objectives of the data management system. The inability to distinguish among grades in terms of noise exposure in the preceding analysis is attributable to the use for a data base of the auxiliary steaming condition where only a small percentage of personnel are overexposed. This result is not expected to be representative of the average conditions on board ship, as Reference 1 shows that a large percentage of engineering personnel are overexposed on a yearly basis.

It is believed that the evaluation of the underway operational mode will not only result in substantially higher percentages of personnel being overexposed (and to a larger degree) but also in a more structured work pattern where grade rankordering according to exposure will be identified.

#### 6.0 REFERENCES

- 1. B. A. Kugler, et al, "Occupational Noise Exposure on FF-1052 (Knox) and DD-963 (Spruance) Class Ships"; Bolt Beranek and Newman Report No. 3410, January 1977.
- 2. I. Guttman, S. S. Wilks and J. S. Hunter, <u>Introductory</u>
  <u>Engineering Statistics</u>, 2nd ed., John Wiley, New York, 1971.

| REPORT DOCUMENTATION PAGE                                                                                                                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| REPORT HUMBER  2. GOVT ACCESSION  AD-A115 2                                                                                                                       |                                                                |
| DEVELOPMENT AND VALIDATION OF SHIPBOARD NOISE EXPOSURE DATA ACQUISITION PROCEDURES                                                                                | 5. TYPE OF REPORT & PERIOD COVERED FINAL                       |
|                                                                                                                                                                   | 6. PERFORMING ORG. REPORT NUMBER 4735                          |
| AUTHOR(a) B. Andrew Kugler Colin H. Hansen Allan G. Piersol                                                                                                       | N: 0014-78-C-0408                                              |
| PERFORMING ORGANIZATION NAME AND ADDRESS BOLT Beranek and Newman Inc. 21120 Vanowen Street, P.O. Box 63 Canoga Park, CA 91303                                     | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| Naval Medical Research & Development ( National Naval Medical Center Bethesda, Maryland 20014  MONITORING AGENCY MAME & ADDRESS/// different from Centrolline Off | 78 + 172 Appendices                                            |
| Office of Naval Research Department of the Navy 800 N. Quincy Street                                                                                              | Unclassified  18a. Declassification/Downgrading                |
| Arlington, VA 22217  6. DISTRIBUTION STATEMENT (of this Report)                                                                                                   | SCHEDULE                                                       |

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
  Shipboard Noise Exposure
  Hearing Conservation
  Modeling
  Noise Measurements
- This study is concerned with the development and validation of a shipboard noise exposure data acquisition procedure. This procedure represents a first step in the overall framework for a Navy Noise Exposure Data Management System which is discussed in the text. The immediate purpose of this data collection process is to provide for standardized measurement techniques that may be used by various Navy units concerned with occupational noise and hearing conservation. This noise data base when computer

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS GOSOLETE S/N 0102-LF-014-6401

SECURITY GLASSIFICATION OF THIS PAGE (When Date Shiered)

- ized, can be used in concert with the shipboard noise exposure model developed in an earlier study [1] to assess the magnitude of the overexposure problem on individual ships, ship classes and ultimately the entire fleet. The benefits of this approach are guidance in the development of hearing conservation and educational programs, and in the assessment of noise control priorities in the fleet. Future extensions of the data management system include:
  - 1. The assessment of audiometric data together with the noise exposure data as a function of personnel rates and,
  - 2. Extension of the system capabilities to other occupational hazards such as heat stress.

The results of this study, which was conducted on 12 ships of the FF-1052 (Knox) Class, showed that standardized measurement techniques consistent with the requirements of the data base can be successfully collected by Navy personnel (Environmental Preventative Medical Units). Both the time required to perform each survey and the quality of the data collected by the EPMUs meet with the original goals of the study.

The validation of the data base was conducted based on the analysis of the "auxiliary steaming" operational mode of 12 ships. Noise exposures for various engineering rates were computed using the analytic model and compared with an independent data set collected using dosimetry. The results of direct comparisons show substantial discrepancies. These are due mostly to a lack of consistent definition in the personnel assignment data and the proximity of the calculated noise exposures to the threshold established by the BUMED noise standard. In retrospect, the selection of the "Auxiliary steaming operational mode was unfortunate in the validation effort. It is believed that comparisons for an "underway" operational mode would yield significantly more consistent results.

It is recommended that a limited validation of the "underway" mode be conducted. Furthermore, it is recommended that the data base be computerized, at least for the FF-1052 (Knox) Class and that all EPMUs utilize the data acquisition procedures when surveying this class.

PROPERTY OF THE PARTY OF THE PA

### APPENDIX A

# THE OCCUPATIONAL NOISE EXPOSURE & ASSESSMENT MODEL

This appendix contains the outline of the noise exposure and assessment model developed in Reference [1]. It is presented here for completeness and as a reference to the additional utility of the data base in addition to the computation of personnel noise exposure.

#### APPENDIX A

# A. OCCUPATIONAL NOISE EXPOSURE AND ITS CONTROL --AN ASSESSMENT MODEL

This chapter presents a discussion of the data base requirements and the sequential steps necessary to evaluate and quantify the noise exposure problem on board surface vessels. The assessment model also explores the acoustic data base and steps necessary to evaluate the noise reduction requirements for equipment in order to meet a specific procedure that may be used to evaluate the state-of-the-art in noise control technology on board ships and the costs associated with the implementation of this technology.

The intent was to develop a model, general enough to evaluate the noise exposure problem on any ship class in the U. S. Navy, and to provide a sequential procedure for the assessment of the noise control alternatives and costs. The parametric organization of the data base allows for a quick evaluation of personnel noise exposure problem in the face of present as well as any future standard. The data base also has the flexibility to be easily expanded by the addition of more information as it becomes available to the Navy, thus providing for a more accurate assessment.

#### A.1 A Model for Noise Exposure Evaluation

This section presents an overview of the general model that will be used to compute the noise exposure problem in shipboard spaces and will discuss the data base requirements necessary to utilize the model.

The need for a model stems from the fact that personnel noise exposure is a quantity which requires the understanding of

several variables; not all of which are noise oriented. For example, since noise exposure is a time weighted quantity (according to DOD/BUMED), it is necessary to know not only the given noise level at a given location but also how that level changes as a function of the ship's operational characteristics. Furthermore, since personnel noise expousre is time and location dependent, it is necessary to obtain a relationship between crew time and location assignments and the noise levels generated by the different ship conditions.

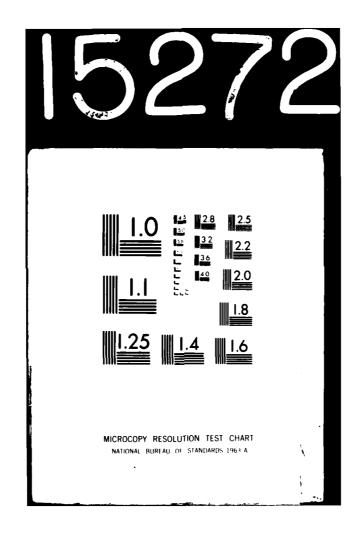
The data base requirements for a personnel noise exposure evaluation are as follows:

- (1) Ship operational characteristics
- (2) Personnel work assignments
- (3) Airborne noise data

The following discussion explores these parameters in terms of the model and shows they interact for the computation of noise exposure.

#### A.1.1 Ship Operational Characteristics

Occupational noise criteria are based on the assumption that exposure levels are repetitive, day in and day out, over long periods of times; for example, a number of years. This condition, of course, does not hold true in the Navy since each ship goes through a number of operational characteristics from cruising conditions to at-dock conditions in the course of a year.


Each one of these operational conditions is characterized by different noise levels, especially in the engineering spaces since the number of on-line pieces of equipment needed under different conditions varies.

BOLT BERANEK AND NEWMAN INC CANOGA PARK CA

EVELOPMENT AND VALIDATION OF SHIPBOARD NOISE EXPOSURE DATA ACQ--ETC(U)

NOV 81 B A KUGLER, C H HANSEN, A 6 PIERSOL N00014-78-C-0408

BNH-4735 N1 AD-A115 272 UNCLASSIFIED 2 = 4



The objective of the ship class operational characteristic parameter is the definition of operational modes which can be considered constant. This will allow the computation of personnel noise exposures which are unique to a specific ship operational mode. For the purposes of this program we will define an operational mode as a ship condition for which the machinery line-ups in each engineering space and the personnel assignments of the crew can be considered constant. In other words, an operational mode means that the noise level at a specific location is closely related to specific machinery line-up and can be considered constant at that location. Furthermore, it means that the personnel working in the engineering spaces go through typical routines that may be considered nearly constant for that operational mode.

The manner in which naval ships operate varies depending on their mission. In that sense, each vessel proceeds through a number of assignments in the course of a year from at-dock conditions, where the vessel is stationary and only a limited number of equipment is operational, to underway conditions which require it to steam under a variety of speeds. Each speed or range of speeds may be associated, in principle, with the operation of a specific machinery line-up, especially in the propulsion system area. It should be recognized, however, that within a ship's class, the operational characteristics and machinery line-up may vary to some degree.

Since, as was pointed out, noise levels within the engineering spaces vary as a function of machinery line-up (equipment operating for a specific condition), it is necessary to describe the ship operational history as a function of time. Moreover, it is desirable to associate a specific machine line-up with each operational mode. Finally, in order to describe a ship class, it is necessary to evaluate how the operational history and machinery line-up vary within the class. This will permit

an assessment of the variability within the class and, in fact, will allow to determine if a typical operational history can be chosen to describe the class. The preceding discussion leads to the following data base requirements necessary to describe the ship class operational characteristics:

- (1) Ship operational history where the amount of time spent at-dock and underway is specified for at least a one-year period.
- (2) A definition of the machinery line-up (on the average) when the ship is operating in each of the above two modes. It is expected that more than one machinery line-up may exist within each mode (i.e., cold iron and auxiliary steaming at-dock). This will necessitate the definition of a number of sub-modes, which may be characterized by a specific machinery line-up. For example, when underway, it is conceivable that machinery line-up will have a relationship with speed ranges of the ship.
- (3) In order to develop an understanding of the mode or sub-mode variability within a ship class the above parameters are required for more than one ship within the class. The number of vessels required for the class evaluation will depend largely on the variability found from ship to ship so that a statistically valid sample may be examined.

The above data wili be used to develop a quantitative description of a ship class operational characteristics. The following relationships will be evaluated and computed:

(1) The definition of a ship's "typical time history year" where the percentage of time spent within each mode or sub-mode is quantified (i.e., 20% of the time at cold

iron, 10% of the time steaming between 10 and 15 knots, etc.).

- (2) The definition of the "typical time history year" variability within the class. This will allow to assess the probability of sub-mode occurrence and confidence limits associated with the assumptions for typical operations. Ideally, it is desirable to introduce statistics into the evaluation by computing the mean and the standard deviation for each mode or sub-mode of operation (i.e., the mean time spent at cold iron sub-mode is 20% with a standard deviation of 5%). This approach will allow to judge if "typical ship class operational history" is indeed quantifiable and define the limits associated with the description.
- within a mode or sub-mode and the variability found in the class. The machinery line-up must be specified separately for each engineering space considered. It is expected that certain variability in this parameter will be found from ship to ship. The definition of the "typical ship class machinery line-up" will be obtained similarly to the "typical time history year" by evaluating the statistics associated with the ship's class operation.

In summary, the operational modes and sub-modes will define the ship operating conditions for which the noise levels in different engineering spaces and the operator assignments in those spaces can be considered <u>constant</u> or are predictable on a twenty-four hour basis. Furthermore, the variability of these operational modes for a specific ship and across ship class will also result from this evaluation.

#### A.1.2 Noise Exposure Model

A "hazard" can be defined as a physical effect which has an adverse impact on the health or safety of individuals in the work environment. In the case of shipboard environments two typical potential hazards are noise and heat stress. Each one of these hazards will have an adverse effect on the health or safety of personnel if they are exposed to the hazard for extended periods of time or the magnitude of the hazard is excessive.

It might be generalized that many health standards, developed to judge the acceptability of a hazard are written in terms of two parameters: time and magnitude. In other words, an operator may safely withstand a certain level of a hazard for a specified amount of time without adverse effects. In general, the magnitude of the hazard is related to the exposure time to the hazard. The longer the exposure time, the lower the allowable magnitude of the hazard. Time and magnitude, therefore, are the two parameters which specify the permissible exposure to a hazard which, in the judgement of a health standard, is considered permissible.

Let us now address the problem of the data base required to evaluate the magnitude of a hazard on man. In the present case the hazard is excessive noise. As specified in the data base requirements of Section A.1, in addition to ship operational characteristics, the two inputs necessary for the computation of noise exposure are personnel work assignments and airborne noise data. Airborne noise is given by the physical phenomena which can be readily measured in terms of sound pressure level. Associated with the acoustical measurement is the location at which the measurement is acquired. Therefore, the description of the noise hazard can be accomplished by describing two

.. . . . .

variables: the <u>magnitude</u>\* of the noise and the <u>location</u> at which the noise was measured. The description of the hazard does not require any additional parameters to the magnitude and location and can be considered constant for the same operational mode or sub-mode.

The second requirement of the data base is the description of the personnel work assignments. Since by definition, the word "exposure" implies that an <u>individual</u> is exposed to the hazard, it is necessry to quantify where and for how long this exposure takes place. Therefore, the duty or personnel work assignment input has two variables: <u>time</u> and <u>location</u>.

Figure A.1 depicts the general arrangement of the noise exposure model. The two basic inputs to the calculation of personnel noise exposure; the personnel work assignment or duty in terms of time and location and the noise level, in terms of location and magnitude are identified for each operational mode or sub-mode. The dependent variable in the data base is "location": the magnitude of noise at a specific location and the amount of time the individual spends at the location. The independent variables are of course time and magnitude. Both the BUMED Inst. 6260.6 and the DOD Inst. 6055.5 are formulated in this manner. The former is as follows:

$$T = \frac{16}{2(L-80)/4} \tag{1}$$

where L is the measured noise level at the operation location in dB(A) and  $\$ is the allowable time of exposure to level L in hours.

Since most noise standards are written in terms of the A-weighted sound pressure levels (dBA), the magnitude of the noise is the only necessary physical descriptor of the phenomena. Implied in the descriptor is a frequency weighting of the noise spectrum which allows to describe the entire audio frequency range with a single number.

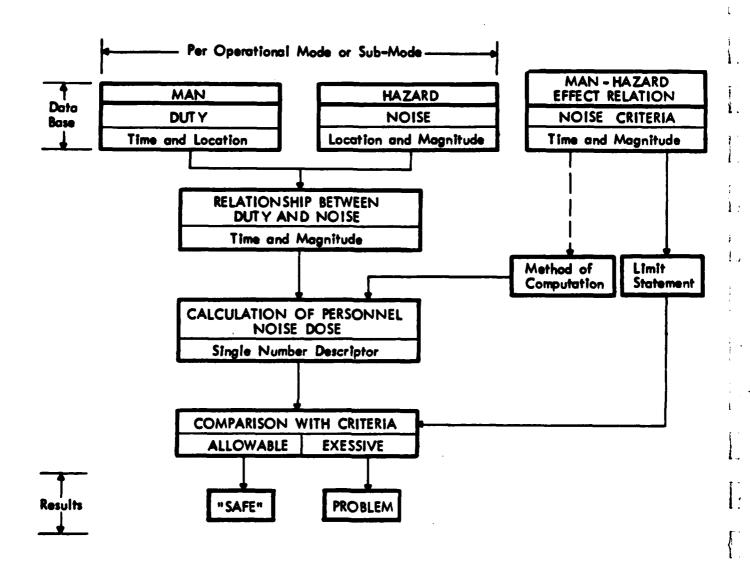



FIGURE A.1 DEFINITION OF NOISE EXPOSURE PROBLEM

The knowledge of these two data inputs allows us to develop the relationship between the duty of the operator and the hazard; this relationship being a function of time and magnitude as follows:

$$I_{i,j} = I_{i,j} f(L_{j,c_{i,j}})$$
 (2)

where  $I_{ij}$  is the <u>ith</u> individual at the <u>jth</u> location,  $L_j$  is the level in dBA at location j and  $C_{ij}$  is the time spent (in hours) by the <u>ith</u> individual at location j. The subscript j refers to the number of spatial locations considered from 1 to m and the subscript i refers to the number of individuals being evaluated from 1 to n.

The development of the relationship between duty and noise is the <u>most important</u> and <u>difficult step</u> in the noise exposure problem. Once this relationship has been established, any man-hazard effect standard can be quickly evaluated and computed.

A few notes of interest. In principle, the noise level data base should be given on a point by point basis. Similarly, the data base for the duty or personnel work assignment should be done on an individual by individual basis. In practice, this is not only impossible but under most conditions, not necessary. For example, the spatial description of noise can be associated with an area; the size of the area will depend on the fluctuations in the noise levels and the accuracy required. In some cases, this may mean a quarter of the space in question or even the entire space may be described by a single noise level. In the case of personnel assignment, it is possible to associate duty with a job description or rank which is common to a number of individuals. These groupings will depend on the variability of job assignments, accuracy required and the ability to predict personnel movements over the long term. In deciding on the

above groupings and generalizations, it is important to remember that the model is intended to describe and analyze the noise exposure problem of an entire ship class. In that sense, averaging techniques in the spatial description of noise level and grouping techniques in the description of personnel assignment aré not only valid but desirable. This will simplify the extent of the data base requirements provided that statistical techniques are used to describe the mean and variability of each descriptor so that, in the end, a meaningful assessment of the accuracy and confidence limits for the personnel exposure predictions can be made.

Furthermore, it should be noted that once the relationship between duty and noise has been established, the information can be updated and refined by any future new information available about one of the above two descriptors. For example, the personnel work assignment data base for a fireman may be described in terms of the number of hours spend at each different location within the engine room based on the information acquired for the group on two ships. The statistics of the data base will provide the confidence limits for that descriptor. If information on the duty assignment for that group is available later for three or more other ships, the confidence limits for the descriptor will be obviously improved. The same reasoning applies to the description of the spatial noise levels.

The relationship between duty and noise may now be used to calculate the personnel noise exposure dose as outlined in Figure A.1. In the case of the DOD standard, the relationship formulated in Eq. (1) may be used to define the fractional noise dose (f) as follows:

$$\mathbf{f}_{ij} = \frac{\mathbf{c}_{ij}}{\mathbf{T}_{ij}} \tag{3}$$

where  $T_{ij}$  is the maximum allowable time (in hours) permissible by the standard at the noise level  $L_j$ . The fractional noise dose is constant for the same operational mode.

The computation of the Daily Noise Dose  $(d_1)$  follows directly from the fractional noise dose equations by using the relationship:

$$d_{i} = \frac{C_{i1}}{T_{i1}} + \frac{C_{i2}}{T_{i2}} + \cdots + \frac{C_{im}}{T_{im}} = \int_{i=1}^{m} f_{ij}$$
 (4)

This calculation results in a single number descriptor which can be compared to the limit statement in the standard to ascertain exceedance or non-exceedance of allowable limits.

The major results that can be drawn from the computation of the daily noise dose are:

- (1) Identification of the number of engineering space

  personnel exposed to excessive noise levels: This is
  done on a space by space basis. For example, if we
  assume that there are eight operators assigned to the
  engine room, the results will show that for the cruising
  mode, between 10 and 20 knots, six of these individuals
  will have exposures in excess of the present OSHA noise
  regulation and two are in compliance with the standard.
- (2) <u>Definition of the magnitude of exceedance and the ability to rank order personnel by noise exposure</u>: An example of this is the same six individuals found over exposed above but now the noise exposure levels for each individual can be rank ordered according to magnitude.

i

- Ability to evaluate, on a comparative basis, the effect of two or more noise standards: An example of this is comparing the BUMED regulation versus the new DOD noise regulation. In this case, using the example of the engine room we might find that according to the BUMED standard only six individuals have excessive noise exposures and in the case of the new DOD standard, all eight individuals have a problem.
- Ability to evaluate the noise problem on an operational mode by mode basis: For example, when in port, under auxiliary steaming, only three individuals may have exposures in excess of the Navy standard. On the other hand, when underway, at 25 knots, seven out of the eight individuals may have an excessive noise exposure. This information, together with the knowledge of percent of time that the ship class spends in each operational mode, may be used to judge the importance of each mode on the overall noise exposure problem of the class.

In summary, the procedure suggested in Figure A.1 allows for not only the computation of the daily noise exposure for a given operating mode but also for the assessment of the differences in noise exposure among various standards and operational modes.

### A.2 A Model for Noise Reduction Evaluation

This section describes the analysis necessary to define the overall noise reduction requirements in each engineering space based on the personnel noise expsosure results. Furthermore, it describes the sequential steps and data base necessary to establish the contribution of individual noise sources (equipment) to the overall noise at a given location and the definition of individual source noise reduction requirements.

The analysis of the noise exposure problem is done through the use of fractional noise dose data developed as a result of the relationship between duty and noise discussed in the previous section. The objective of this procedure is to identify the minimum noise reduction requirements ( $\Delta L_j$ ) at each location as a function of the total noise exposure problem (not simply noise levels) in an optimum manner. The sequential analysis is shown in Figure A.2. The analysis is limited to individuals who have been identified as having an excessive daily noise exposure dose,  $d_k$ . This operation is defined by the first entry in Figure A.2 where the individuals with excessive noise exposures are classified as follows:

$$I_k = I_k(d_k > 1.0)$$
 (5)

where k is a sub-set of i from 1 to 1.

First of all, the fractional noise doses,  $(f_k)$  are organized in array form together with the daily noise dose  $(d_k)$  as follows:

| 1 |                | L               | ocation          | ıs |         | a                  |
|---|----------------|-----------------|------------------|----|---------|--------------------|
| k | 1              | 2               | 3                |    | m       | ďk                 |
| 1 | f,,,           | f               | f                |    | f       | d,                 |
| 2 | f              | f <sub>22</sub> | f <sub>23</sub>  |    | f<br>2m | đ                  |
|   |                |                 |                  |    |         |                    |
| 2 | f <sub>2</sub> | fl2             | f <sub>l</sub> , |    | fem     | đ <sub>&amp;</sub> |

This presentation summarizes all of the daily noise dose information and shows the contribution of each location to the daily noise dose. It is desirable to classify these locations according to their contribution to the noise exposure problem. This is accomplished through the calculation of the Priority Index (PI) as shown in Figure A.2. First of all, we define the Partial Priority (PP) as:

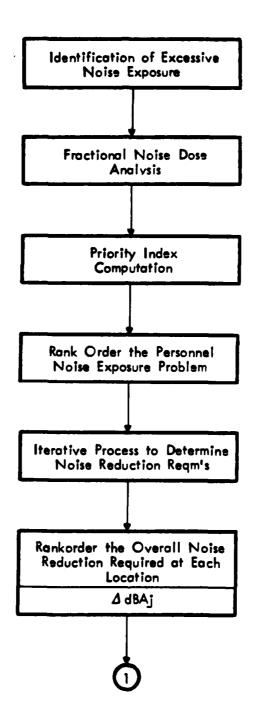



FIGURE A.2 ANALYSIS OF NOISE EXPOSURE

water the same

$$(PP)_{kj} \begin{cases} = \frac{f_{kj}}{(d_k - 1)} & \text{when} \quad f_{kj} = (d_k - 1) \\ = 1 & \text{when} \quad f_{kj} = (d_k - 1) \end{cases}$$

$$(6)$$

As described by the equation, the Partial Priority is the ratio of the fractional noise dose to the excess daily noise dose. The ratio indicates the <u>fraction of overexposure</u> that would be eliminated from the individual's daily noise dose if the noise level at location j was reduced to the threshold level for the exposure time.

Using Equation (6) the fractional noise dose array may be converted into a Partial Priority array as shown below:

| man j                      |                  |                  |                  |       |                   |                |
|----------------------------|------------------|------------------|------------------|-------|-------------------|----------------|
| k                          | 1                | 2                | 3                | • • • | m                 | <sup>d</sup> k |
| 1                          | PP <sub>11</sub> | PP <sub>12</sub> | PP <sub>13</sub> |       | PP <sub>1</sub> m | d,             |
| 2                          | PP21             | PP <sub>22</sub> | PP <sub>23</sub> | • • • | PP <sub>2</sub> m | đ <sub>2</sub> |
|                            |                  |                  |                  |       | •                 | •              |
| L                          | PP <sub>2</sub>  | PP <sub>2</sub>  | PP <sub>L</sub>  | • • • | PPem              | d <sub>2</sub> |
| $\sum_{k=1}^{k} (PP)_{kj}$ | PI,              | PI               | PIs              |       | PIm               |                |

The sum of all individual partial priorities at a given location is defined as the Priority Index (PI) as follows:

$$(PI)_{j} = \sum_{k=1}^{\ell} (PP)_{kj}$$
 (7)

The (PI)<sub>j</sub> indicator provides a ranking of each area according to where the most reduction in excess noise exposure (not simply noise exposure) could be achieved for the most people. The distribution of (PI)<sub>j</sub> also provides a quick assessment of the

relative importance of one location versus another and in that sense serves as a gauge in identifying the "hot spots" which contribute most to overexposure.

Two factors of note about the (PI), indicator. Firstly, the maximum value of (PI), is one times the number of overexposed individuals considered (1x1). For example, if 5 individuals are considered, the maximum value of PI = 5. The significance of obtaining the maximum rating at a given location is that by reducing the noise level at that location to the standard, all individuals considered would be in compliance. In other words, the reduction of the noise level from the measured to the standard (90 dBA for OSHA) at that location will bring the exposure of all individuals to the maximum permissible or below without any controls at other locations regardless of level. Secondly, if more than one individual is considered in each category k (the individual was defined previously as one person or a group of people performing the same work routine), the (PI) indicator may be very simply modified to include a weighting factor that will reflect this case. The required modification includes the addition of a factor N to Equation (6) as follows:

$$(PP)_{kj} \begin{cases} = N_k \cdot \frac{f_{kj}}{(d_k - 1)} & \text{when } f_{kj} \leq (d_k - 1) \\ = N_k & \text{when } f_{kj} > (d_k - 1) \end{cases}$$

$$(8)$$

where  $N_k$  is the number of individuals in category k. This change will also modify the maximum value of (PI)<sub>j</sub> from (lx $\ell$ ) to:

Maximum (PI) = 
$$\sum_{k=1}^{k} N_k$$
 (9)

In practical cases, the PI indicator is seldom equal to the maximum. In this case, the distribution of PI values allows to rank order the problem areas by location as was pointed out previously. However, the final objective is to evaluate the magnitude of noise reduction that is required at each location to meet a standard. The optimum method to compute the magnitude of noise reduction required is by an iterative process using the PI ranking indicator.

The method calls for reducing the noise level of the highest PI indicator in 1 dB steps until the PI indicator is reduced in magnitude to below the second highest. The operation is repeated until no daily noise dose(s) in excess of the standard are left (i.e.,  $d_k \le 1.0$ ). Each iteration involves the following steps:

- (1) Reduce the noise level, (L) by 1 dB at the location with the highest  $PI_{max}$ .
- (2) Compute the new allowable exposure time, (C) for the new level (L-1) dBA.
- (3) Compute the new fractional noise dose (f) for all individuals affected by this location.
- (4) Compute the reduced daily noise dose, (d) for all individuals affected by this location.
- (5) Re-compute the PI for all locations. Note that by changing the magnitude of  $d_k$ , the values of all  $(PP)_{kj}$  are modified. The resulting effect is the reduction of the PI indicator at the location with (L-1) dBA and the increase of the PI indicator at all other locations.

(6) Repeat the operation until all  $d_k$  values are equal to or less than 1. Note as <u>individual</u> values of  $d_k$  become unity or less, the corresponding values of  $f_k$  in the array become zero and are excluded from further computation.

The result of this operation will provide the minimum amount of noise reduction required at each location that will result in compliance with a standard. This method also optimizes the procedure of assigning noise reduction requirements at each location from the individual's excess noise exposure point of view. The magnitude of noise reduction at each location (expressed in dBA) may now be rank ordered as shown in Figure A.2.

The analysis of the noise exposure problem resulted in the development of noise reduction requirements,  $\Delta dB_j$ , for each area or location without specifying which <u>sources</u> of noise would require noise reduction. The sequential procedure designed to evaluate the individual equipment noise reduction is shown in Figure A.3.\*

Before we enter into the discussion of equipment noise reduction requirements it must be noted that no simplistic procedure for this step is possible since, for the case where two or more sources contribute excessively to the noise level at a location, an infinite number of source noise reduction combinations is possible. Furthermore, the assignment of noise reduction to a specific equipment item generally must be weighted with some engineering judgement as to the feasibility and practicality of

<sup>\*</sup> Note that in addition to the magnitude, the noise reduction requirement retains the statistics associated with the original noise level. For example, a reduction requirement of 10 dB is computed for a location whose mean noise level was described as 95.0 dBA with a standard deviation () of 2.0 dB. Therefore, a noise reduction requirement of 14.0 dB (10 + 2) would assure that 95% of the ships within the class would meet the standard at that location.

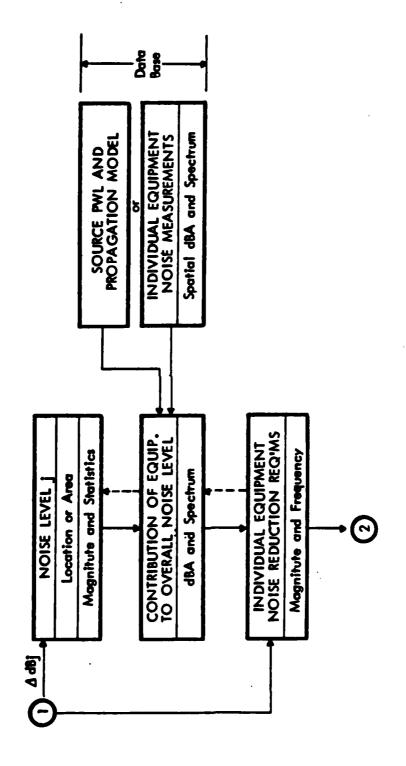



FIGURE A.3 ANALYSIS OF NOISE PROBLEM

achieving the desired reduction. Finally, we must recognize the economic trade-off value by weighting the reduction of one machine versus another. For example, often it is more expedient and cost-effective to require a substantially higher reduction of one item over another although the noise level contribution of both may be the same. With these facts in mind, the following procedure is presented as a guide rather than a strict methodology.

First of all, it is necessry to know which equipment items or equipment components contribute to the noise level at the location of interest. In other words, what is the noise level, in terms of magnitude and frequency, that may be associated with each equipment item. This requirement defines the need for a second type of acoustic data base. The objectives for developing the data base are to describe the noise environment in terms of the individual components and their paths of propagation.

The analysis of the noise environment is very often a complicated problem, especially in a shipboard situation due to the number of sources that must be considered and the complexity of the space within which the noise is propagated. Two approaches are possible:

(1) Diagnostic Noise Data: This method relies on a systematic data base accumulation in which individual pieces of equipment are operated, one by one, and their contribution at different locations within the engineering space is measured simultaneously. The procedure requires not only sophisticated measurement techniques, but many repetitive measurements before confidence limits to different locations across the class can be established. Information typically is presented in dBA and in octave bands or third octave bands of frequency. Narrow band data and equipment noise radiation characteristics are

" THE CONTRACTOR IS

CALL THE CONTROL OF T

sometimes also available. In addition to the acoustic data the operational characteristics of the ship and machinery under which the test was performed must also be well documented.

Analytic Approach: This approach relies on a measurement or estimation of Sound Power Level (PWL) for each source and a propagation model that will allow the <u>prediction</u> of the sound pressure level (SPL) of the source as a function of frequency at <u>any specific location</u> in the compartment. Due to the very complex reflection and the diffraction environment common to machinery dense engineering spaces, this methodology may only have a limited application to the Navy noise problem under the present state-of-the-art.

Using the diagnostic noise data, the noise levels at location j are reconstructed in terms of the individual contributors as shown in Figure A.3. Based on the overall noise reduction requirements, the individual equipment noise reductions are computed in terms of magnitude and frequency.

Note that the knowledge of the contribution of individual equipment items to the overall noise environment at a location may be used to compute the effect of an individual control on the personnel noise exposure problem. That is, if we assume that a 15 dBA control is available for the gear train, then this information may be used to recompute the noise levels at all locations affected by this item. Then the procedure indicated in Figure A.1 is repeated. This action allows for a quick "cause - effect" assessment of controlling this equipment item on all personnel affected and provides a tool for individual equipment noise control trade-off analysis.

## 2.4 A Model for Cost Estimation of Noise Control

In the previous sections the assessment of personnel noise exposure and individual noise reduction requirements for equipment responsible for excessive noise levels was discussed. This section will dwell on the aspect of noise control alternatives that can be introduced to mitigate the noise problem and with the evaluation of noise control costs. Figure A.4 shows the sequential steps suggested to arrive at the estimate of noise control costs.

First of all, the figure shows the individual source noise reduction requirements that were developed in the previous analysis. These requirements are given for each piece of equipment in terms of magnitude and frequency.

The noise reduction requirements can now be addressed in terms of noise control technology which can be applied to the Navy environment. The <u>noise control technology</u> represents the third type of data base required in the model.

The purpose of the noise control data base is to identify the type and quantify the performance of noise reduction systems that may be applied to existing sources of excessive noise. This includes a description of the physical characteristics of the control measure, its mode of application and installation, and the expected or measured noise reduction performance. The noise control techniques fall naturally into two groups:

(1) Proven Noise Controls: This group includes successful noise control treatments that are documented by their performance history from Navy applications. The objective here is to list all of the noise control measures that have been successfully developed and implemented in shipboard environments. Data such as the type of

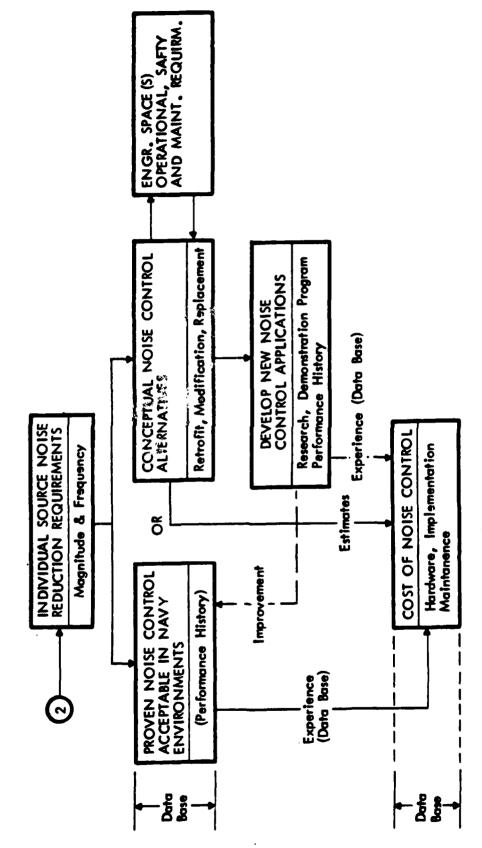



FIGURE A.4 NOISE CONTROL ALTERNATIVES AND COSTS

treatment, configuration, description of its application, and the amount of the noise reduction achieved through the application are required in this portion of the data base.

- (2) Conceptual Noise Controls: This group includes noise control treatments used in other than Navy applications or noise control concepts which have not yet been proven successful in shipboard environments. These measures may take the form of:
  - a) Retrofit Controls: This generally refers to systems that contain the noise near the source, i.e. enclosures, partial barriers, damping, etc.
  - b) Modifications: This generally refers to replacement of maghine parts with quieter ones or the addition of noise control components.
  - c) Replacement of Sources: This generally means replacing noisy equipment units with quieter versions.
  - d) <u>Space Treatment</u>: This generally means acoustic absorbtive treatment of the space boundaries with the objective to reduce the reverberant noise level contribution.

The assessment of these conceptual noise control alternatives must be made in line with the operational, safety and maintenance requirements of the engineering spaces in which the installation must be made. In that sense, some of the shipboard operational constraints are taken into account at this stage, even though no performance history is available for the controls.

The state of the same

The final design of the conceptual noise control alternatives into proven noise controls acceptable in shipboard environments must, in many cases, go through a developmental phase which may be construed as new noise control applications. The new noise control applications may take the form of a demonstration program where potential noise controls are implemented on a vessel and the performance history of the design is monitored.

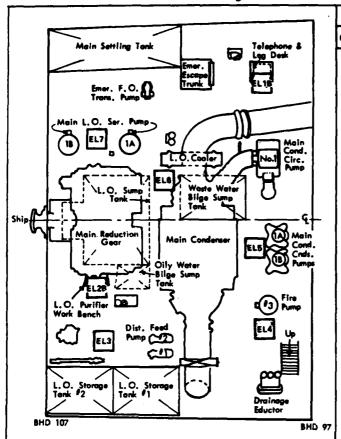
Both proven noise controls and conceptual noise control alternatives are now the subject of cost estimates. The cost of noise control represents the fourth and last type of data base required in the model. The purpose of the cost data base is to identify the cost of hardware, implementation and maintenance of each noise control measure.

The cost data base for the proven noise control techniques are acquired from the experience gained in the installations. Here variability due to the method of installation (using Navy personnel, civilian Navy shipyard personnel or outside contractors) may be evaluated and be the subject of statistical treatment if appropriate. No such experience exists for the conceptual noise controls since these have not been implemented on Navy vessels and the cost of hardware, implementation and maintenance must necessarily be only a first order estimate. It is recommended that shipyard estimators be used for that purpose and an average value from three or more sources used.

The cost of noise control data base may now be used to arrive at the total cost of noise control for each vessel and the class based on the noise reduction requirements of a specific standard. The procedure allows for the development of a number of cost trade-off analyses; the two most prominent being:

(1) The determination of the absolute and relative costs of compliance between two or more noise standards. For

example, the cost of compliance with present DOD standard.


(2) The cost-benefit analysis of individual noise controls where the number of individuals in compliance as a result of the implementation of a control may be assessed on its own merits or versus another control.

The above analysis may be used to develop budgetary estimates for appropriation requests and to assist in defining those noise sources which are most critical from the standpoint of potential hearing damage.

APPENDIX B

Sound Survey Form

| JDE      |                                                 | GENERAL INFORMATION                                         |                                                  |                    |                |             |                                                  | :             | OPERATING CONDITIONS            |          |                                                                                          |  |
|----------|-------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|--------------------|----------------|-------------|--------------------------------------------------|---------------|---------------------------------|----------|------------------------------------------------------------------------------------------|--|
|          | Space<br>Ship's<br>Surve<br>Time<br>Inspendence | s Class s Surveyer s Name y Date of Day cted by Type Number | d <u>!</u><br>-<br>-<br>-<br>-                   | FF1052<br>Engine R | m. Low         |             |                                                  | Ope<br>(a     | erating Mo i) In-Port b) Underw |          | Cond. I Cond. III Cond. IV Cond. IV Cond. V  Cold Iron Aux. Steaming Speed kts Shaft rpm |  |
|          |                                                 |                                                             |                                                  |                    | so             | UND LE      | EVEL                                             | ATA           |                                 |          |                                                                                          |  |
| LOC.     | MEAS.<br>LOC.                                   | dBA                                                         | INTER®                                           | co                 | MMENTS         | 3           | LOC.<br>CODE                                     | MEAS.<br>LOC. | dBA                             | INTER.   | COMMENTS                                                                                 |  |
|          | EL1B                                            |                                                             |                                                  | <del></del>        |                |             | 1                                                | EL6           |                                 |          |                                                                                          |  |
|          | EL2B                                            |                                                             |                                                  |                    |                |             |                                                  | EL7           |                                 |          |                                                                                          |  |
|          | EL3                                             |                                                             |                                                  |                    |                |             | <del>                                     </del> |               |                                 |          |                                                                                          |  |
|          | EL4                                             |                                                             |                                                  |                    |                | <u> </u>    |                                                  |               |                                 |          | · · · · · · · · · · · · · · · · · · ·                                                    |  |
| !        | EL5                                             |                                                             |                                                  |                    |                |             |                                                  | L             |                                 | <u> </u> |                                                                                          |  |
| Ì        | _                                               |                                                             |                                                  | PI                 | ERSON          | NEL AS      | SIGNM                                            | ENT D         | ATA                             |          |                                                                                          |  |
| LOC.     | MEAS.                                           | BILLET<br>TITLE                                             | RATE                                             | WEAR 6             | WATCH TO STAND | HRS./DA     | Y AT LO                                          |               |                                 | CC       | MMENTS 9                                                                                 |  |
| -        |                                                 |                                                             | +                                                | <del>  '</del>     | ,              |             |                                                  | <del>''</del> |                                 |          |                                                                                          |  |
|          |                                                 |                                                             |                                                  |                    |                |             |                                                  | -             |                                 |          | <del></del>                                                                              |  |
|          |                                                 |                                                             |                                                  |                    |                |             |                                                  |               |                                 |          |                                                                                          |  |
|          |                                                 |                                                             |                                                  |                    |                |             |                                                  |               |                                 |          |                                                                                          |  |
|          |                                                 |                                                             | <del> </del>                                     |                    |                |             |                                                  |               |                                 |          |                                                                                          |  |
| -        |                                                 |                                                             | <del> </del>                                     |                    |                | $\vdash$    |                                                  |               |                                 | · ·      | <del></del>                                                                              |  |
| <u> </u> |                                                 | ļ                                                           | <del> </del>                                     |                    |                | ├─┤         |                                                  | $\dashv$      | <del></del>                     |          |                                                                                          |  |
|          |                                                 |                                                             | <del>                                     </del> |                    |                |             |                                                  | $\top$        |                                 | •        |                                                                                          |  |
|          |                                                 |                                                             |                                                  |                    |                |             |                                                  |               |                                 |          |                                                                                          |  |
|          |                                                 |                                                             |                                                  |                    |                |             |                                                  |               |                                 |          |                                                                                          |  |
|          |                                                 |                                                             |                                                  |                    |                |             |                                                  | $\Box$        |                                 |          |                                                                                          |  |
| <b> </b> |                                                 |                                                             | <u> </u>                                         |                    |                |             |                                                  |               | <u></u>                         |          |                                                                                          |  |
| <u></u>  |                                                 |                                                             | <b></b>                                          |                    |                |             |                                                  |               |                                 |          |                                                                                          |  |
| ( ]-     |                                                 |                                                             | +                                                |                    |                |             |                                                  | _             |                                 |          |                                                                                          |  |
|          |                                                 |                                                             | +                                                |                    |                | <del></del> |                                                  |               |                                 |          |                                                                                          |  |
|          |                                                 | L                                                           |                                                  | لـــــا            | L              | LI          |                                                  |               |                                 |          |                                                                                          |  |



| evel                         | <del></del>                                                                                                                                                                                                                                                                                            |      |  |  |  |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|
| MACHINERY LINE-UP (OPTIONAL) |                                                                                                                                                                                                                                                                                                        |      |  |  |  |  |  |  |  |
| CODE                         | DESCRIPTION                                                                                                                                                                                                                                                                                            | ONIÀ |  |  |  |  |  |  |  |
|                              | Main Reduction Gear Main Condensate Pump 1A Main Condensate Pump 1B Fire Pump No. 3 Main Condensate Circulation Pump No. 1 Main L.O. Service Pump 1A Main L.O. Service Pump 1B L.O. Purifier No. 1 Distillate Feed Pump No. 1 Distillate Feed Pump No. 2 Drainage Eductor Emergency F.O. Transfer Pump |      |  |  |  |  |  |  |  |

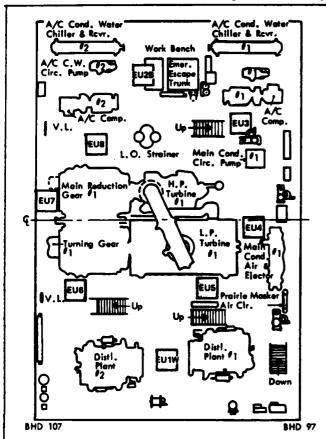
| RATE  | RATE DESCRIPTION              | DIVISION |
|-------|-------------------------------|----------|
| MMC   | Machinist Mate - Chief        | A        |
| MM1   | Machinist Mate - 1st Class    | Α        |
| MM2   | Machinist Mate - 2nd Class    | A        |
| MM3   | Machinist Mate - 3rd Class    | A        |
| MMFN  | Machinist Mate - Fireman      | A        |
| FN    | Fireman                       | A        |
| BTCM  | Boiler Tender - Master Chief  | В        |
| BT1   | Boiler Tender - 1st Class     | В        |
| BT2   | Boiler Tender - 2nd Class     | В        |
| BT3   | Boiler Tender - 3rd Class     | 8        |
| BTFN  | Boiler Tender - Fireman       | В        |
| EMC   | Electrician Mate - Chief      | Ε        |
| EM1   | Electrician Mate - 1st Class  | E        |
| EM2   | Electrician Mate - 2nd Class  | E        |
| EM3   | Electrician Mate - 3rd Class  | E        |
| EMFN. | Electrician Mate - Fireman    | E        |
| MMCS  | Machinist Mate - Senior Chief | M        |
| MM1   | Machinist Mate - 1st Class    | M        |
| MM2   | Machinist Mate - 2nd Class    | M        |
| MM3   | Machinist Mate - 3rd Class    | M        |
| MMFN  | Machinist Mate - Fireman      | M        |
| FN    | Fireman                       | M        |

### **DEFINITIONS & AMPLIFICATIONS**

| ① Reediness     | Cond. I - General Quarters Cond. III - Wartime Steeming Cond. IV - Peacetima #4eming Cond. V - In-Perú                                                                                                                                                                                 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② Inter.?       | Stands for "is the noise level intermittent?" The ques-<br>tion mark (?) requires a "yes" or "no" enswer. Inter-<br>mittent noise is defined as the sound generated by<br>machinery which is cycled on and off and results in<br>large fluctuations in noise levels (more than 5 dBA). |
| 3 Comments      | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                                      |
| Moss. Loc.      | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                                           |
| Rete            | Enter individual's rate abbreviation as shown on the parsonnel rate table; i.e. Boller Tender, First Class-BT1.                                                                                                                                                                        |
| Weer Pret. ?    | Stands for "is the individual wearing personal hearing protection?" such as surplugs or surmuffs. The question mark (?) requires an "yes" or "no" enewer.                                                                                                                              |
| Watch Stand ?   | Stands for "is the individual a watch stander or a watch<br>stander trainse?". The question mark (?) requires a<br>"yes" or "no" answer.                                                                                                                                               |
| Hrs/Day et Lec. | Enter the number of hours (to closest % hour) that it. individual works at location. If snewer is "yes" to  enter number of hours spent as a wasth standar at lo-                                                                                                                      |

Should be used to describe work task when appropriate.

( Comments


\* Telegraphic Control

FF1052 Class

# **SOUND SURVEY FORM**

Page 2 of 12

| ODE          |                                                  | GENERAL INFORMATION                              |              |               |                              |         | CODE                                    |               | OPERATING CONDITIONS                                       |             |                                                                                                                                                                                                                              |  |  |
|--------------|--------------------------------------------------|--------------------------------------------------|--------------|---------------|------------------------------|---------|-----------------------------------------|---------------|------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | Ship's<br>Surve<br>Time<br>Inspec<br>Meter       | Surveyed<br>Name<br>y Date<br>of Day<br>exted by | d   <u>E</u> |               | KNOX                         |         |                                         | Ope<br>(a     | diness <sup>©</sup><br>erating Mo<br>) In-Port<br>) Underw |             | Cond. I Cond. III Cond. IV Cond. IV Cond. V Cond. V Cond. V Cond. V Cold Iron Co |  |  |
|              |                                                  |                                                  |              |               | so                           | UND LE  | VEL C                                   | ATA           |                                                            |             |                                                                                                                                                                                                                              |  |  |
| LOC.<br>CODE | MEAS.<br>LOC.                                    | dBA                                              | INTER®       | co            | MMENTS                       | 3       | LOC.                                    | MEAS.<br>LOC. | dSA                                                        | INTER.      | COMMENTS                                                                                                                                                                                                                     |  |  |
|              | EU1W                                             |                                                  |              |               |                              |         |                                         | EU6           |                                                            | <b></b>     |                                                                                                                                                                                                                              |  |  |
|              | EU2B                                             |                                                  |              |               |                              | _       |                                         | EU7           |                                                            |             | ·•                                                                                                                                                                                                                           |  |  |
|              | EU3                                              |                                                  |              |               |                              |         |                                         | EU8           |                                                            |             |                                                                                                                                                                                                                              |  |  |
|              | EU4                                              |                                                  |              |               |                              |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
| [            | EU5                                              |                                                  |              |               |                              |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
| LOC.         | MEAS.                                            | BILLET<br>TITLE                                  | RATE         | · · · · · · · | ERSONN<br>WATCH <sup>©</sup> | HRS./DA | Y AT LO                                 | c. <b>®</b>   | ATA                                                        | co          | MMENTS 9                                                                                                                                                                                                                     |  |  |
| <b> </b>     | -                                                |                                                  | <del> </del> | ?             | 7                            | WORK    | WATC                                    | +             |                                                            |             | -                                                                                                                                                                                                                            |  |  |
|              | <del></del>                                      |                                                  | -            |               | <u> </u>                     |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  |              |               |                              |         | -                                       |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  |              |               |                              |         |                                         |               |                                                            |             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                        |  |  |
|              |                                                  |                                                  |              | L             |                              |         |                                         |               | ·                                                          |             |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  |              |               |                              | ļ       |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
| <b></b>      | ļ                                                |                                                  | -            |               | ļ                            |         | ······································  |               |                                                            |             | <del></del>                                                                                                                                                                                                                  |  |  |
| <u> </u>     |                                                  |                                                  | _            |               | <u> </u>                     | <br>    |                                         |               |                                                            |             | <del></del>                                                                                                                                                                                                                  |  |  |
| <del> </del> | <b> </b>                                         |                                                  | -            | -             | <del> </del>                 |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
| ļ <u></u>    | <del>                                     </del> |                                                  | +            | <u> </u>      | <u> </u>                     |         | • • • • • • • • • • • • • • • • • • • • |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
| <b> </b>     |                                                  |                                                  | 1            |               |                              |         |                                         | $\dashv$      |                                                            | ·- <u>-</u> |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  |              |               |                              |         |                                         | 1             |                                                            |             |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  | 1            |               |                              |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  |              |               |                              |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |
|              |                                                  |                                                  |              |               |                              |         |                                         |               | -                                                          |             |                                                                                                                                                                                                                              |  |  |
| <u> </u>     | <u> </u>                                         |                                                  |              | L             | L                            |         |                                         |               |                                                            |             |                                                                                                                                                                                                                              |  |  |



|      | MACHINERY LINE-UP (OPTIONAL)                                                                                                                                                                                                                                                                                                 |       |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                  | ON(VI |  |  |  |  |  |  |
|      | Main Reduction Gear/H.P. Turbine/L.P. Turbine Distilling Plant No. 1 Distilling Plant No. 2 L.O. Strainer Main Condensate Circulation Pump Main Condensate Air Ejector Air Conditioning Compressor No. 1 Air Conditioning Compressor No. 2 A/C Chilled Water Circulation Pump No. 1 A/C Chilled Water Circulation Pump No. 2 |       |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                              |       |  |  |  |  |  |  |

| RATE        | RATE DESCRIPTION              | DIVISION |
|-------------|-------------------------------|----------|
| MMC         | Machinist Mate - Chief        | Α        |
| MM1         | Machinist Mate - 1st Class    | A        |
| MM2         | Machinist Mate - 2nd Class    | Α        |
| MM3         | Machinist Mate - 3rd Class    | A        |
| MMFN        | Machinist Mate - Fireman      | Α        |
| FN          | Fireman                       | A        |
| BTCM        | Boiler Tender - Master Chief  | В        |
| BT1         | Boiler Tender - 1st Class     | В        |
| BT2         | Boiler Tender - 2nd Class     | В        |
| BT3         | Boiler Tender - 3rd Class     | В        |
| BTFN        | Boiler Tender - Fireman       | В        |
| EMC         | Electrician Mate - Chief      | E        |
| EM1         | Electrician Mate - 1st Class  | E        |
| EM2         | Electrician Mate - 2nd Class  | E        |
| EM3         | Electrician Mate - 3rd Class  | E        |
| <b>EMFN</b> | Electrician Mate - Fireman    | E        |
| MMCS        | Machinist Mate - Senior Chief | M        |
| MM1         | Machinist Mate - 1st Class    | M        |
| MM2         | Machinist Mate - 2nd Class    | M        |
| MM3         | Machinist Mate - 3rd Class    | M        |
| MMFN        | Machinist Mate - Fireman      | M        |
|             |                               |          |

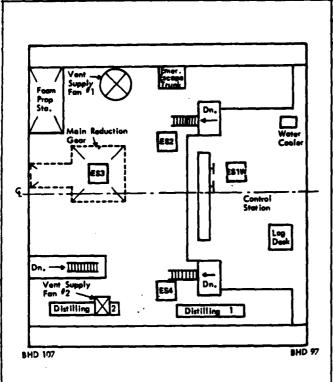
FN

Fireman

### **DEFINITIONS & AMPLIFICATIONS**

| ① Reediness     | Cond. I - General Querters Cond. III - Wartime Steaming Cond. IV - Peacetime Steaming Cond. V - In-Port                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② later. ?      | Stands for "is the noise level intermittent?" The question mark (?) requires a "yes" or "no" enswer. Intermittent noise is defined as the sound generated by mechinery which is cycled on and off and results in lerge fluctuations in noise levels (more than 5 dBA). |
| Comments        | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                      |
| ● Moss. Loc.    | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                           |
| (§) Reta        | Enter individual's rate abbraviation as shown on the personnel rate table; i.e. Boiler Tender, First Class-BT1.                                                                                                                                                        |
| Weer Prot. ?    | Stands for "is the individual wearing personal hearing protection?" such as corplugs or cormuffs. The question mark (?) requires an "yes" or "no" answer.                                                                                                              |
| Watch Stand ?   | Stands for "is the individual a watch standar or a watch standar trainee?". The question mark (?) requires a "yes" or "no" answer.                                                                                                                                     |
| Hrs/Day at Lac. | Enter the number of hours (to closest % hour) that the individual works at location. If answer is "yes" to penter number of hours spent as a watch stander at location.                                                                                                |

Should be used to describe work task wh


FF1052 Class

# **SOUND SURVEY FORM**

Page 3 of 12

| JODE         |                                                     | GE                                                      | NERAL IN                  | FORMAT            | TION         |        | CODE         |               | OPERATING CONDITIONS            |          |                                                                                                                                                                                                                              |  |
|--------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------|-------------------|--------------|--------|--------------|---------------|---------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              | Space<br>Ship's<br>Surve<br>Time<br>Inspec<br>Meter | s Class Surveyer Name y Date of Day cted by Type Number | d <u>!</u><br>-<br>-<br>- | F1052<br>Engine R | lm. — 2n     | d Deck |              | Ope<br>(a     | erating Mo i) In-Port b) Underw |          | Cond. I Cond. III Cond. IV Cond. IV Cond. V Cond. V Cond. V Cond. V Cold Iron Co |  |
|              |                                                     |                                                         | ···                       |                   | SO           | UND LE | VEL C        | ATA           |                                 |          |                                                                                                                                                                                                                              |  |
| LOC.<br>CODE | MEAS.<br>LOC.                                       | dBA                                                     | INTER®                    | co                | MMENTS       | 3      | LOC.<br>CODE | MEAS.<br>LOC. | dBA                             | INTER.   | COMMENTS                                                                                                                                                                                                                     |  |
|              | ES1W                                                |                                                         |                           | <del></del>       | -            |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
|              | ES 2                                                |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
|              | ES 3                                                |                                                         |                           |                   |              |        | <b> </b>     |               |                                 |          |                                                                                                                                                                                                                              |  |
| -            | ES 4                                                |                                                         |                           |                   |              | ····   | <b></b> _    |               |                                 |          |                                                                                                                                                                                                                              |  |
| LOC.<br>CODE | MEAS. 6                                             | BILLET<br>TITLE                                         | RATE                      |                   | WATCHO STAND | r      |              | c. <b>®</b>   | AIA                             | co       | мментs <sup>®</sup>                                                                                                                                                                                                          |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 | <u> </u> |                                                                                                                                                                                                                              |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |
| .—           |                                                     |                                                         |                           |                   |              |        |              | _             |                                 |          |                                                                                                                                                                                                                              |  |
|              |                                                     |                                                         |                           |                   |              |        |              |               |                                 |          |                                                                                                                                                                                                                              |  |

i



| MACHINERY LINE-UP (OPTIONAL) |                                                |     |  |  |  |  |  |  |
|------------------------------|------------------------------------------------|-----|--|--|--|--|--|--|
| CODE                         | DESCRIPTION                                    | ONI |  |  |  |  |  |  |
|                              | Vent Supply Fan No. 1<br>Vent Supply Fan No. 2 |     |  |  |  |  |  |  |
|                              |                                                |     |  |  |  |  |  |  |
|                              |                                                |     |  |  |  |  |  |  |
|                              |                                                |     |  |  |  |  |  |  |
|                              |                                                |     |  |  |  |  |  |  |
|                              |                                                |     |  |  |  |  |  |  |
|                              |                                                |     |  |  |  |  |  |  |

| RATE  | RATE DESCRIPTION              | DIVISION |
|-------|-------------------------------|----------|
| MMC   | Machinist Mate - Chief        | A        |
| MM1   | Machinist Mate - 1st Class    | A        |
| MM2   | Machinist Mate - 2nd Class    | Α        |
| ммз   | Machinist Mate - 3rd Class    | Α        |
| MMFN  | Machinist Mate - Fireman      | A        |
| FN    | Fireman                       | A        |
| BTCM  | Boiler Tender - Master Chief  | 8        |
| BT1   | Boiler Tender - 1st Class     | 8        |
| BT2   | Boiler Tender - 2nd Class     | В        |
| BT3   | Boiler Tender - 3rd Class     | В        |
| BTFN  | Boiler Tender - Fireman       | В        |
| EMC   | Electrician Mate - Chief      | E        |
| EM1   | Electrician Mate - 1st Class  | E        |
| EM2   | Electrician Mate - 2nd Class  | E        |
| EM3   | Electrician Mate - 3rd Class  | E        |
| EMFN. | Electrician Mate - Fireman    | E        |
| MMCS  | Machinist Mate - Senior Chief | M        |
| MM1   | Machinist Mate - 1st Class    | M        |
| MM2   | Machinist Mate - 2nd Class    | M        |
| MM3   | Machinist Mate - 3rd Class    | M        |
| MMFN  | Machinist Mate - Fireman      | M        |
| FN    | Fireman                       | M        |

#### **DEFINITIONS & AMPLIFICATIONS**

Stands for "is the individual a watch stander or a watch stander trainse?". The question mark (?) requires a "yes" or "no" enswer.

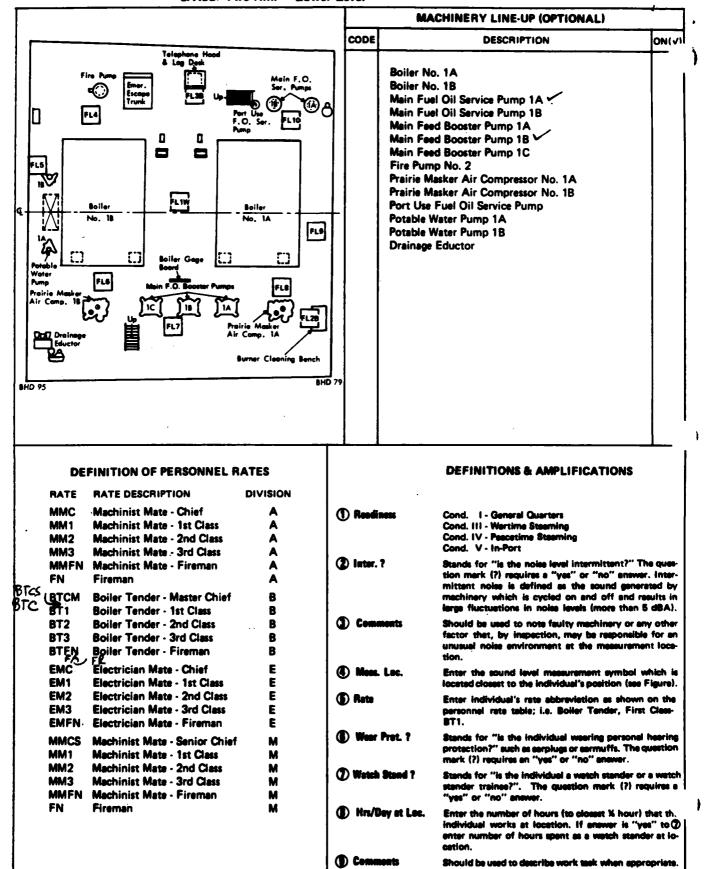
Enter the number of hours (to closest % hour) that it, individual works at location, if answer is "yes" to penter number of hours spent as a westh stander at lo-

Should be used to describe work task when appropriate.

| ① Rendiness  | Cond. I - General Quarters Cond. III - Wertime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② Inter. ?   | Stands for "is the noise level intermittent?" The ques-<br>tion mark (?) requires a "yes" or "no" enswer. Inter-<br>mittent noise is defined as the sound generated by<br>machinery which is cycled on and off and results in<br>lerge fluctuations in noise levels (more than 5 dBA). |
| ① Comments   | Should be used to note faulty mechinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                                      |
| Mees. Loc.   | Enter the cound level measurement symbol which is<br>located closest to the individual's position (see Figure).                                                                                                                                                                        |
| ( Rate       | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boller Tender, First Class-BT1.                                                                                                                                                                        |
| West Prot. 7 | Stands for "is the individual wearing personal hearing protection?" such as earpluge or earmuffs. The question mark (?) requires an "yes" or "no" enewer.                                                                                                                              |

estion.

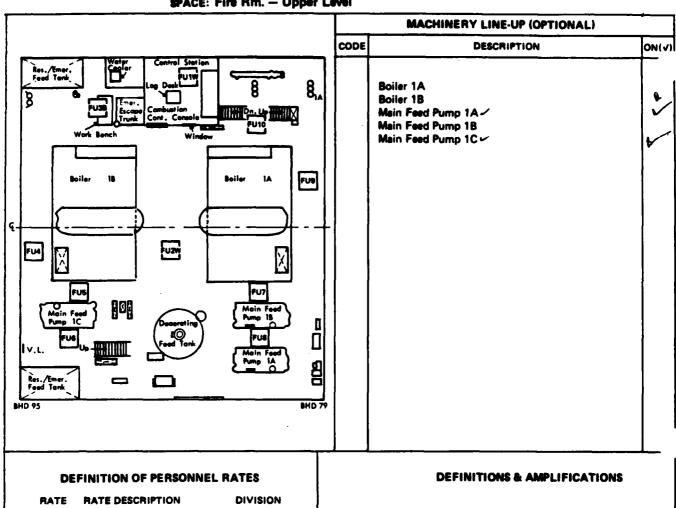
Watch Stand ?


(I) Hrs/Day at Loc.

(I) Comments

# SOUND SURVEY FORM

Page 4 of 12


| LODE         |               | GENERAL INFORMATION |                                                  |         |                  |         |              |               | OPERATING CONDITIONS |              |                                             |  |  |
|--------------|---------------|---------------------|--------------------------------------------------|---------|------------------|---------|--------------|---------------|----------------------|--------------|---------------------------------------------|--|--|
|              | Ship's        | Class<br>Surveye    |                                                  | F1052 ( | KNOX<br>— Lowe   | r Level |              |               | diness <sup>©</sup>  |              | Cond. I Cond. III Cond. IV Cond. IV Cond. V |  |  |
|              | Ship's        | Name                | -                                                |         |                  |         |              | Оре           | rating Mo            | de           |                                             |  |  |
|              | Surve         | y Date              | -                                                |         |                  |         | ĺ            | (a            | ) In-Port            |              | Cold Iron                                   |  |  |
|              | Time          | of Day              | ۱-                                               |         |                  |         |              | ļ             |                      |              | Aux. Steaming                               |  |  |
|              | Inspec        | cted by             | 1-                                               |         |                  |         | l            | (b            | ) Underw             | ay           | Speedkts                                    |  |  |
|              | Meter         | Type                | l·-                                              |         |                  |         |              |               |                      |              | Shaftrpm                                    |  |  |
|              | Serial        | Number              | 1-                                               |         |                  |         |              | Prai          | rie Maske            | r            | On 🗆 Off 🗆                                  |  |  |
|              |               |                     |                                                  |         |                  | UND LE  |              |               |                      | <del>,</del> |                                             |  |  |
| LOC.<br>CODE | MEAS.<br>LOC. | dBA                 | INTER②                                           | co      | MMENTS (         | 3)      | LOC.<br>CODE | MEAS.<br>LOC. | dBA                  | INTER.       | COMMENTS                                    |  |  |
|              | FL1W          |                     |                                                  |         |                  |         |              | FL6           |                      |              |                                             |  |  |
|              | FL2B          |                     |                                                  |         |                  |         |              | FL7           |                      |              |                                             |  |  |
|              | FL3B          |                     |                                                  |         |                  |         | <u> </u>     | FL8           |                      |              |                                             |  |  |
|              | FL4           |                     |                                                  |         |                  |         |              | FL9           |                      |              |                                             |  |  |
|              | FL5           |                     |                                                  |         |                  |         |              | FL10          |                      |              |                                             |  |  |
| LOC.         | MEAS.         | BILLET              | RATEG                                            |         | ERSONN<br>WATCH® |         |              |               | ATA                  |              | MMENTS®                                     |  |  |
| CODE         | LOC.          | TITLE               | ""                                               | PROT.   | STAND            | WORK    | WATC         |               |                      |              | MINIE I I I I I                             |  |  |
|              |               |                     | <del>                                     </del> |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              | _             |                      |              | - <del></del>                               |  |  |
| <b> </b>     |               | <del>-</del>        |                                                  |         |                  |         |              |               |                      |              | <del></del>                                 |  |  |
| · ·          | <b>†</b>      |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              | 1             |                     | 7                                                |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               | ,                   |                                                  |         |                  | ]       |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
| <u></u>      |               |                     | <u> </u>                                         |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
| ·            |               |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |
|              |               | ٠                   | 1.                                               |         |                  |         |              |               |                      |              |                                             |  |  |
|              | L             |                     |                                                  |         |                  |         |              |               |                      |              |                                             |  |  |



# **SOUND SURVEY FORM**

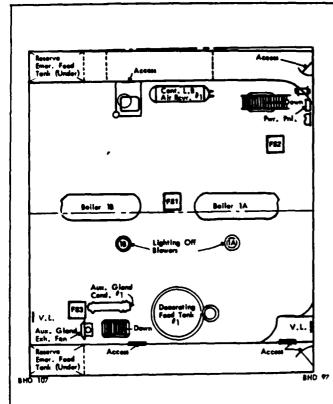
Page 5 of 12

| ODE          |               | GEI               | NERAL IN                                         | FORMAT           | TION                                             |                                                  | CODE                                 |                                       | OPERATING CONDITIONS    |              |                                     |  |  |
|--------------|---------------|-------------------|--------------------------------------------------|------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------|--------------|-------------------------------------|--|--|
|              | Ship's        | Class<br>Surveyed |                                                  | F1052<br>Fire Rm | KNOX<br>. – Uppi                                 | r Level                                          |                                      | Rea                                   | diness <sup>©</sup>     |              | Cond. I Cond. III Cond. IV Cond. IV |  |  |
|              |               | Name<br>y Date    | -                                                |                  | /                                                |                                                  |                                      | 1                                     | erating Mo<br>) In-Port | de           | Cold Iron                           |  |  |
| 1            | 1             | of Day            |                                                  |                  |                                                  |                                                  | l                                    | '                                     | •                       | 1            | Aux. Steaming □                     |  |  |
|              | i             | ted by            |                                                  |                  |                                                  |                                                  |                                      | (6                                    | ) Underw                | av           | Speedkts                            |  |  |
|              | Meter         | •                 |                                                  | •                |                                                  |                                                  | 1                                    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                         |              | Shaftrpm                            |  |  |
|              |               | Number            | \ <b>_</b>                                       |                  |                                                  |                                                  |                                      | Prai                                  | rie Maske               | r            | On 🗆 Off 🗆                          |  |  |
|              |               |                   |                                                  |                  | \$0                                              | UND LE                                           | VEL C                                | ATA                                   |                         |              | ·                                   |  |  |
| LOC.<br>CODE | MEAS.<br>LOC. | dBA               | INTER®                                           | co               | MMENTS                                           | 3                                                | LOC.<br>CODE                         | MEAS.<br>LOC.                         | dBA                     | INTER.       | COMMENTS                            |  |  |
|              | FU1W          |                   |                                                  |                  |                                                  |                                                  | 1                                    | FU 6                                  | -                       |              |                                     |  |  |
|              | FU2W          |                   |                                                  | _                |                                                  |                                                  | 1                                    | FU 7                                  |                         |              |                                     |  |  |
|              | FU3B          |                   |                                                  |                  |                                                  |                                                  |                                      | FU 8                                  |                         |              |                                     |  |  |
|              | FU 4          |                   |                                                  |                  |                                                  |                                                  |                                      | FU 9                                  |                         |              |                                     |  |  |
|              | FU 5          |                   |                                                  |                  | <u>-</u>                                         |                                                  |                                      | FU10                                  |                         |              |                                     |  |  |
| LOC.         | MEAS.         | BILLET<br>TITLE   | RATEG                                            | T                | WATCH O                                          | HRS./DA                                          | SIGNMENT DATA  AY AT LOC.® COMMENTS® |                                       |                         |              |                                     |  |  |
|              | 1             |                   | <del>                                     </del> | 7                | 7                                                | WORK                                             | WATC                                 | Н                                     |                         |              |                                     |  |  |
|              |               |                   |                                                  |                  |                                                  |                                                  |                                      |                                       |                         |              |                                     |  |  |
|              |               |                   | +                                                | ┼                |                                                  |                                                  |                                      | _                                     |                         |              |                                     |  |  |
|              | <b>-</b>      |                   | <del> </del>                                     |                  | <del>                                     </del> |                                                  |                                      | _                                     |                         |              | <del></del>                         |  |  |
|              |               |                   | <u> </u>                                         |                  |                                                  |                                                  |                                      |                                       |                         |              | - <del></del>                       |  |  |
|              |               |                   |                                                  |                  |                                                  |                                                  |                                      |                                       |                         |              |                                     |  |  |
|              |               |                   |                                                  |                  |                                                  |                                                  |                                      |                                       |                         |              |                                     |  |  |
|              |               |                   |                                                  |                  |                                                  |                                                  |                                      |                                       |                         |              |                                     |  |  |
|              |               |                   |                                                  |                  |                                                  |                                                  |                                      |                                       | ·— <u>,</u>             |              |                                     |  |  |
|              |               |                   | <del></del>                                      |                  |                                                  |                                                  | <del></del>                          |                                       | <del></del>             |              |                                     |  |  |
|              |               | -                 | <del> </del>                                     |                  |                                                  |                                                  |                                      |                                       |                         |              |                                     |  |  |
|              | ļ             | ·                 | <del> </del>                                     |                  |                                                  | <b> </b>                                         | <del></del>                          |                                       |                         |              |                                     |  |  |
|              |               |                   | <del> </del>                                     |                  |                                                  |                                                  |                                      |                                       |                         |              |                                     |  |  |
| <u>`</u>     |               |                   | <del>  '</del> -                                 | <del> </del> -   |                                                  | <del>                                     </del> |                                      |                                       |                         | <del></del>  |                                     |  |  |
|              |               |                   | +                                                |                  |                                                  | <del> </del>                                     |                                      |                                       |                         |              |                                     |  |  |
|              |               | L                 |                                                  |                  | L                                                |                                                  |                                      | L_                                    |                         | <del>-</del> |                                     |  |  |



| RATE | RATE DESCRIPTION              | DIVISION |
|------|-------------------------------|----------|
| MMC  | Machinist Mate - Chief        | A        |
| MM1  | Machinist Mate - 1st Class    | Α        |
| MM2  | Machinist Mate - 2nd Class    | A        |
| ММЗ  | Machinist Mate - 3rd Class    | A        |
| MMFN | Machinist Mate - Fireman      | A        |
| FN   | Fireman                       | A        |
| BTCM | Boiler Tender - Master Chief  | В        |
| BT1  | Boiler Tender - 1st Class     | 8        |
| BT2  | Boiler Tender - 2nd Class     | В        |
| BT3  | Boiler Tender - 3rd Class     | В        |
| BTFN | Boiler Tender - Fireman       | B        |
| EMC  | Electrician Mate - Chief      | E        |
| EM1  | Electrician Mate - 1st Class  | E        |
| EM2  | Electrician Mate - 2nd Class  | E        |
| EM3  | Electrician Mate - 3rd Class  | E        |
| EMFN | Electrician Mate - Fireman    | E        |
| MMCS | Machinist Mate - Senior Chief | M        |
| MM1  | Machinist Mate - 1st Class    | M        |
| MM2  | Machinist Mate - 2nd Class    | M        |
| MM3  | Machinist Mate - 3rd Class    | M        |
| MMFN | Machinist Mate - Fireman      | M        |
| FN   | Fireman                       | M        |

| _               | 1                                                                                                                                                                                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Recodiness  | Cond. I - General Quarters Cond. III - Wartime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                                                                                |
| ② Inter. ?      | Stands for "Is the noise level intermittent?" The ques-<br>tion mark (?) requires a "yes" or "no" enewer. Inter-<br>mittent noise is defined as the sound generated by<br>machinery which is cycled on and off and results in<br>lerge fluctuations in noise levels (more than 5 dBA). |
| Comments        | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                                      |
| Moss, Loc.      | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                                           |
| (§) Rete        | Enter Individual's rate abbreviation as shown on the personnel rate table; i.e. Boiler Tender, First Class-BT1.                                                                                                                                                                        |
| West Prot. 7    | Stands for "Is the individual wearing personal hearing protection?" such as earplugs or earmuffs. The question mark (?) requires an "yes" or "no" enewer.                                                                                                                              |
| Watch Stand ?   | Stands for "is the individual a watch stander or a watch stander trainee?". The question merk (?) requires a "yes" or "no" enewer.                                                                                                                                                     |
| Hrs/Day at Lec. | Enter the number of hours (to closest X hour) that th.                                                                                                                                                                                                                                 |


cation.

individual works at location. If answer is "yes" to 🛡 enter number of hours spent as a watch stander at lo-

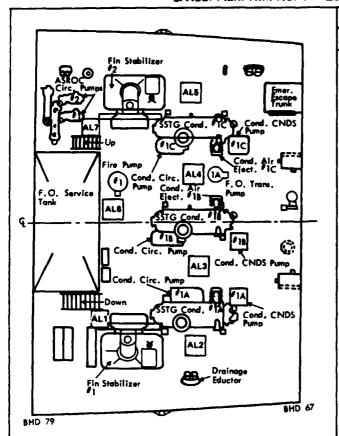
Should be used to describe work task when appropriets.

(I) Comments

| CODE                                             |                                                                                                       | GENERAL INFORMATION |                                                  |       |                                 |             |              |                 | OPERATING CONDITIONS                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------|-------|---------------------------------|-------------|--------------|-----------------|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                  | Ship's Class Space Surveyed Ship's Name Survey Date Time of Day Inspected by Meter Type Serial Number |                     |                                                  |       | FF1062 KNOX Fire Rm. — 2nd Deck |             |              | Ope<br>(a<br>(t | erating Mo  i) In-Port  b) Underw  irie Maske | ay                                               | Cond. I Cond. III Cond. IV Cond. IV Cond. V Co |  |  |
|                                                  | · · · · · · · · · · · · · · · · · · ·                                                                 |                     |                                                  |       |                                 | UND LI      | <del></del>  |                 | <del></del>                                   |                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| LOC.                                             | MEAS.<br>LOC.                                                                                         | dBA                 | INTER®                                           | CO    | MMENTS                          | <b>w</b>    | LOC.<br>CODE | MEAS.<br>LOC.   | dBA                                           | INTER.                                           | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <u> </u>                                         | FS 1                                                                                                  |                     |                                                  |       | -                               |             | $\vdash$     |                 | <del></del>                                   | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <del></del>                                      | FS 2                                                                                                  |                     |                                                  |       |                                 |             |              |                 |                                               |                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                  | FS 3                                                                                                  |                     |                                                  |       |                                 |             |              |                 |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ļ                                                |                                                                                                       |                     |                                                  |       |                                 |             | <u> </u>     |                 |                                               | ļ                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LOC                                              | MEAS.                                                                                                 | BILLET              | RATEG                                            | r     | ERSONN<br>WATCH®                | <del></del> |              |                 | ATA                                           | CO                                               | MMENTS 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| CODE                                             | LOC.                                                                                                  | TITLE               |                                                  | PROT. | STAND                           | WORK        | WATC         |                 | -                                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ļ                                                |                                                                                                       |                     | <del></del>                                      |       |                                 |             |              | +               |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       |                     | 1                                                |       |                                 | <u> </u>    |              |                 | <del></del>                                   |                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                  |                                                                                                       |                     |                                                  |       |                                 |             |              |                 |                                               |                                                  | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                  |                                                                                                       |                     |                                                  |       |                                 |             |              |                 |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       |                     |                                                  |       |                                 |             |              | $\bot$          |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       |                     | -                                                |       |                                 |             |              |                 | <u> </u>                                      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <b></b>                                          |                                                                                                       |                     | +                                                |       |                                 |             |              | +-              |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <del>                                     </del> |                                                                                                       |                     |                                                  |       |                                 |             |              | _               |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       |                     | 1                                                |       |                                 |             |              |                 |                                               |                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                  |                                                                                                       |                     |                                                  |       |                                 |             |              |                 |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       |                     |                                                  |       |                                 |             |              |                 |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <u> </u>                                         |                                                                                                       |                     | <del></del>                                      |       |                                 |             |              | $\dashv$        |                                               | •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| . —                                              |                                                                                                       |                     | <del>                                     </del> | ļ     |                                 |             |              | _               |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       |                     | <del> </del>                                     |       |                                 |             |              | +               |                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  |                                                                                                       | L                   |                                                  |       |                                 |             |              |                 | <del> </del>                                  |                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |



| (    |                                                     |          |  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------|----------|--|--|--|--|--|--|--|--|
|      | MACHINERY LINE-UP (OPTIONAL)                        |          |  |  |  |  |  |  |  |  |
| CODE | DESCRIPTION                                         | ON(V)    |  |  |  |  |  |  |  |  |
|      | Boiler 1A V Boiler 1B Auxiliary Gland Exhaust Fan V |          |  |  |  |  |  |  |  |  |
|      |                                                     | gh.      |  |  |  |  |  |  |  |  |
|      |                                                     |          |  |  |  |  |  |  |  |  |
|      |                                                     |          |  |  |  |  |  |  |  |  |
|      |                                                     |          |  |  |  |  |  |  |  |  |
|      |                                                     |          |  |  |  |  |  |  |  |  |
| ŀ    |                                                     | ľ        |  |  |  |  |  |  |  |  |
| ļ    |                                                     | . }      |  |  |  |  |  |  |  |  |
|      |                                                     | )        |  |  |  |  |  |  |  |  |
|      |                                                     |          |  |  |  |  |  |  |  |  |
| ļ    |                                                     | <b>\</b> |  |  |  |  |  |  |  |  |
|      | •                                                   |          |  |  |  |  |  |  |  |  |
|      |                                                     | }        |  |  |  |  |  |  |  |  |
| i    |                                                     |          |  |  |  |  |  |  |  |  |


| RATE        | RATE DESCRIPTION              | DIVISION |
|-------------|-------------------------------|----------|
| MMC         | Machinist Mate - Chief        | A        |
| MM1         | Machinist Mate - 1st Class    | A        |
| MM2         | Machinist Mate - 2nd Class    | A        |
| MM3         | Machinist Mate - 3rd Class    | A        |
| MMFN        | Machinist Mate - Fireman      | A        |
| FN          | Fireman                       | A        |
| BTCM        | Boiler Tender - Master Chief  | В        |
| BT1         | Boiler Tender - 1st Class     | В        |
| BT2         | Boiler Tender - 2nd Class     | В        |
| BT3         | Boiler Tender - 3rd Class     | В        |
| BTFN        | Boiler Tender - Fireman       | В        |
| EMC         | Electrician Mate - Chief      | E        |
| EM1         | Electrician Mate - 1st Class  | E        |
| EM2         | Electrician Mate - 2nd Class  | E        |
| EM3         | Electrician Mate - 3rd Class  | E        |
| <b>EMFN</b> | Electrician Mate - Fireman    | E        |
| MMCS        | Machinist Mate - Senior Chief | M        |
| MM1         | Machinist Mate - 1st Class    | M        |
| MM2         | Machinist Mate - 2nd Class    | M        |
| MM3         | Machinist Mate - 3rd Class    | M        |
| MMFN        | Machinist Mate - Fireman      | M        |
| FN          | Fireman                       | M        |

### **DEFINITIONS & AMPLIFICATIONS**

| 1 Rendiness         | Cond. 1 - General Quarters Cond. III - Wartime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② later. ?          | Stands for "is the noise level intermittent?" The ques-<br>tion mark (?) requires a "yes" or "no" enswer, inter-<br>mittent noise is defined as the sound generated by<br>machinery which is cycled on and off and results in<br>lerge fluctuations in noise levels (more than 5 dBA). |
| 3 Comments          | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                                      |
| Mess. Lec.          | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                                           |
| (5) Rate            | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boiler Tender, First Class-BT1.                                                                                                                                                                        |
| Weer Prot. 7        | Stands for "Is the individual wearing personal hearing protection?" such as earplugs or earmuffs. The question mark (?) requires an "yes" or "no" snewer.                                                                                                                              |
| Watch Stand ?       | Stands for "is the individual a watch stander or a watch<br>stander trainee?". The question mark (?) requires a<br>"yes" or "no" enswer.                                                                                                                                               |
| (I) Hrs/Day at Lec. | Enter the number of hours (to closest % hour) that to. Individual works at location. If answer is "yes" to ②                                                                                                                                                                           |

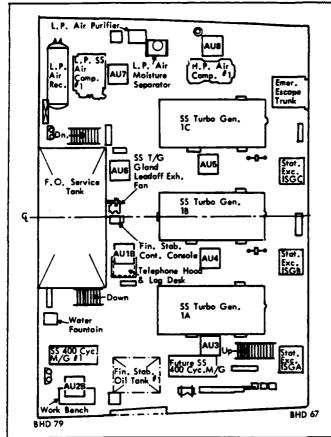
cetion.

| LODE         |                                                                                                       | GENERAL INFORMATION |               |                                                                           |          |                                                  |               |                                                   | OPERATING CONDITIONS            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------|-------------------------------------------------------------------------------------------------------|---------------------|---------------|---------------------------------------------------------------------------|----------|--------------------------------------------------|---------------|---------------------------------------------------|---------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | Ship's Class Space Surveyed Ship's Name Survey Date Time of Day Inspected by Meter Type Serial Number |                     |               | Aux. Rm. #1, Lower Level ip's Name rvey Date ne of Day pected by ter Type |          |                                                  |               | Ope<br>(a                                         | erating Mo i) In-Port b) Underw |              | Cond. I Cond. III Cond. IV Cond. IV Cond. V Cond. V Cond. V Cond. V Cold Iron Cold Iro |  |  |
|              |                                                                                                       |                     |               |                                                                           | so       | UND LE                                           | VEL C         | ATA                                               |                                 | <b>_</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LOC.         | MEAS.<br>LOC.                                                                                         | dBA                 | INTER®        | cc                                                                        | MMENTS   | 3                                                | LOC.<br>CODE  | MEAS.<br>LOC.                                     | dBA                             | INTER.       | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|              | AL1                                                                                                   |                     |               |                                                                           |          |                                                  |               | AL6                                               |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | AL2                                                                                                   |                     |               |                                                                           |          |                                                  |               | AL7                                               |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <u> </u>     | AL3                                                                                                   |                     |               |                                                                           |          |                                                  |               |                                                   |                                 | <del> </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ļ            | AL4                                                                                                   |                     |               |                                                                           |          |                                                  | ļ             |                                                   |                                 | ļ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ' —          | AL5                                                                                                   |                     | <u></u>       |                                                                           |          |                                                  | <u> </u>      |                                                   | ł                               | <del> </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1            |                                                                                                       |                     |               | Pl                                                                        | ERSON    | VEL ASS                                          | SIGNM         | ENT D                                             | ATA                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LOC.         | MEAS. ®                                                                                               | BILLET<br>TITLE     | RATEG         | PROT.                                                                     | WATCH T  | -                                                |               | <del></del>                                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| -            |                                                                                                       |                     | <del></del>   | 7                                                                         | 7        | WORK                                             | WATC          | <del>"                                     </del> |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <u> </u>     |                                                                                                       |                     | <del>- </del> |                                                                           |          | <del>  </del>                                    |               |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     |               |                                                                           | <u> </u> | <del>                                     </del> |               | <del></del>                                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     |               |                                                                           |          |                                                  |               |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     |               |                                                                           |          |                                                  |               |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <u> </u>     |                                                                                                       |                     | <u> </u>      |                                                                           | <u></u>  |                                                  | , <del></del> |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | ļ                                                                                                     |                     | <del> </del>  |                                                                           |          |                                                  |               |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <del> </del> |                                                                                                       |                     | -             |                                                                           |          |                                                  |               | +-                                                | -                               | · · · · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     | +             |                                                                           |          |                                                  |               | $\dashv$                                          |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     | 1             |                                                                           |          |                                                  |               |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     |               |                                                                           |          |                                                  |               |                                                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                                                                       |                     | <b></b>       |                                                                           |          | L                                                |               |                                                   |                                 |              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <u> </u>     | ļ                                                                                                     |                     | -             |                                                                           |          | <b>  </b>                                        |               | $\dashv$                                          |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | . 1                                                                                                   |                     | 1             | l                                                                         | ı        | ı I                                              |               | ı                                                 |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ,—           | -                                                                                                     |                     | +             |                                                                           | ļ        | ┝╼╾┤                                             |               | -                                                 |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



|      | MACHINERY LINE-UP (OPTIONAL)                                                                                                                                                                                                                                                                                                                                |        |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
| CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                 | ON(1/1 |  |  |  |  |  |  |
|      | S.S. Turbo Generator No. 1A S.S. Turbo Condensate Air Ejector No. 1A S.S. Turbo Generator No. 1B S.S. Turbo Condensate Air Ejector No. 1B S.S. Turbo Generator No. 1C S.S. Turbo Condensate Air Ejector No. 1C Fire Pump No. 1 Fire Stabilizer Power Unit No. 1 Fire Stabilizer Power Unit No. 2 F.O. Transfer Pump ASROC Circulation Pump Drainage Eductor |        |  |  |  |  |  |  |

| RATE  | RATE DESCRIPTION              | DIVISION |
|-------|-------------------------------|----------|
| MMC   | Machinist Mate - Chief        | A        |
| MM1   | Machinist Mate - 1st Class    | Α        |
| MM2   | Machinist Mate - 2nd Class    | Α        |
| MM3   | Machinist Mate - 3rd Class    | A        |
| MMFN  | Machinist Mate - Fireman      | Α        |
| FN    | Fireman                       | A        |
| BTCM  | Boiler Tender - Master Chief  | В        |
| BT1   | Boiler Tender - 1st Class     | В        |
| BT2   | Boiler Tender - 2nd Class     | В        |
| BT3   | Boiler Tender - 3rd Class     | В        |
| BTFN  | Boiler Tender - Fireman       | В        |
| EMC   | Electrician Mate - Chief      | E        |
| EM1   | Electrician Mate - 1st Class  | E        |
| EM2   | Electrician Mate - 2nd Class  | E        |
| EM3   | Electrician Mate - 3rd Class  | E        |
| EMFN. | Electrician Mate - Fireman    | E        |
| MMCS  | Machinist Mate - Senior Chief | M        |
| MM1   | Machinist Mate - 1st Class    | M        |
| MM2   | Machinist Mate - 2nd Class    | M        |
| MM3   | Machinist Mate - 3rd Class    | M        |
| MMFN  | Machinist Mate - Fireman      | M        |
| FN    | Fireman                       | M        |


### DEFINITIONS & AMPLIFICATIONS

|                  | ſ                                                                                                                                                                                                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ① Reediness      | Cond. I - General Quarters Cond. III - Wartime Steeming Cond. IV - Paccetime Steeming Cond. V - In-Port                                                                                                                                                                |
| ② Inter. ?       | Stands for "is the noise level intermittent?" The question mark (?) requires a "yes" or "no" answer. Intermittent noise is defined as the sound generated by machinery which is cycled on and off and results in large fluctuations in noise levels (more than 5 dBA). |
| 3 Comments       | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                      |
| Moes. Loc.       | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                           |
| (§) Rate         | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boller Tender, First Class-BT1.                                                                                                                                                        |
| Wear Prot. ?     | Stands for "is the individual waering personal hearing protection?" such as earplugs or sermuffs. The question mark (?) requires an "yes" or "no" answer.                                                                                                              |
| Watch Stand ?    | Stands for "is the individual a watch standar or a watch standar trainee?". The question mark (?) requires a "yes" or "no" enewer.                                                                                                                                     |
| Thre/Day at Lec. | Enter the number of hours (to closest % hour) that the individual works at location. If answer is "yes" to penter number of hours apent as a watch stander at location.                                                                                                |
| (I) Comments     | Should be used to describe work task when appropriate.                                                                                                                                                                                                                 |

# **SOUND SURVEY FORM**

Page 8 of 12

| ODE          |                                                  | GENERAL INFORMATION                             |              |                    |         |                                                  |              | :             | OPERATING CONDITIONS         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------|--------------------------------------------------|-------------------------------------------------|--------------|--------------------|---------|--------------------------------------------------|--------------|---------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | Ship's<br>Surve<br>Time<br>Inspec<br>Meter       | Surveyed<br>Name<br>y Date<br>of Day<br>cted by | d A          | FF1052<br>.ux. Rm. | #1, Upp | per Level                                        |              | Ope<br>(a     | erating Mo in-Port b) Underw | 1                                     | Cond. I Cond. III Cond. IV Cond. IV Cond. V Cond. V Cond. V Cond. V Cold Iron Cond. Steaming Con |  |  |
|              | Serial                                           | Number                                          |              |                    | so      | UND LE                                           | VEL D        | DATA          |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LOC.<br>CODE | MEAS.<br>LOC.                                    | dBA                                             | INTER®       | co                 | MMENTS  | 3                                                | LOC.<br>CODE | MEAS.<br>LOC. | dBA                          | INTER.                                | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|              | AU1B                                             |                                                 |              |                    |         |                                                  |              | AU6           |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | AU2B                                             |                                                 |              |                    |         |                                                  |              | AU7           |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | AU 3                                             |                                                 |              |                    |         |                                                  |              | AU8           |                              |                                       | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|              | AU4                                              |                                                 |              |                    |         | · ·                                              |              |               |                              | ļ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| '            | AU 5                                             |                                                 |              |                    |         |                                                  |              |               | <u> </u>                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| L            |                                                  |                                                 |              | PI                 | ERSONN  | NEL ASS                                          | IGNM         | ENT D         | ATA                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LOC.<br>CODE | MEAS. ®                                          | BILLET<br>TITLE                                 | RATE         | WEAR®              | WATCH D | HRS./DAY                                         | WATC         |               |                              | cc                                    | MMENTS 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|              |                                                  |                                                 |              |                    |         |                                                  |              |               | <u> </u>                     | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              |                    |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              |                    |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              | ļ                  |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 | <del>-</del> | <b>}</b>           |         |                                                  |              |               |                              | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              | -                  |         | <del>                                     </del> |              |               |                              | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | <del>                                     </del> |                                                 | +            | +                  |         |                                                  |              | +             |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <b></b>      |                                                  |                                                 |              |                    |         | $\vdash$                                         |              |               |                              |                                       | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|              |                                                  |                                                 | <del> </del> |                    |         | <del>                                     </del> | ·····        | $\dashv$      | _                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 | †            |                    |         |                                                  |              |               |                              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              |                    |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              |                    |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                                                  |                                                 |              |                    |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ·            |                                                  |                                                 |              | <u> </u>           |         |                                                  |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| }•           |                                                  |                                                 | <del> </del> | ļ                  | _       | <b></b> _                                        |              |               |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | L l                                              |                                                 | L            | 1                  |         | i [                                              |              | ı             |                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



| MACHINERY LINE-UP (OPTIONAL) |                                                                                                                                                                  |       |  |  |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|
| CODE                         | DESCRIPTION                                                                                                                                                      | ON(v) |  |  |  |  |  |  |  |
|                              | S.S. Turbo Generator 1A S.S. Turbo Generator 1B S.S. Turbo Generator 1C S.S. 400 Cycle Motor Generator No. 1 L.P. Air Compressor No. 1 H.P. Air Compressor No. 2 |       |  |  |  |  |  |  |  |
|                              |                                                                                                                                                                  |       |  |  |  |  |  |  |  |
|                              |                                                                                                                                                                  |       |  |  |  |  |  |  |  |

| RATE | RATE DESCRIPTION              | DIVISION |
|------|-------------------------------|----------|
| MMC  | Machinist Mate - Chief        | A        |
| MM1  | Machinist Mate - 1st Class    | A        |
| MM2  | Machinist Mate - 2nd Class    | A        |
| MM3  | Machinist Mate - 3rd Class    | A        |
| MMFN | Machinist Mate - Fireman      | A        |
| FN   | Fireman                       | A        |
| BTCM | Boiler Tender - Master Chief  | В        |
| BT1  | Boiler Tender - 1st Class     | В        |
| BT2  | Boiler Tender - 2nd Class     | В        |
| BT3  | Boiler Tender - 3rd Class     | В        |
| BTFN | Boiler Tender - Fireman       | В        |
| EMC  | Electrician Mate - Chief      | E        |
| EM1  | Electrician Mate - 1st Class  | E        |
| EM2  | Electrician Mate - 2nd Class  | E        |
| EM3  | Electrician Mate - 3rd Class  | E        |
| EMFN | Electrician Mate - Fireman    | E        |
| MMCS | Machinist Mate - Senior Chief | M        |
| MM1  | Machinist Mate - 1st Class    | M        |
| MM2  | Machinist Mate - 2nd Class    | - M      |
| MM3  | Machinist Mate - 3rd Class    | M        |
| MMFN | Machinist Mate - Fireman      | M        |
| FN   | Fireman                       | M        |
|      |                               |          |

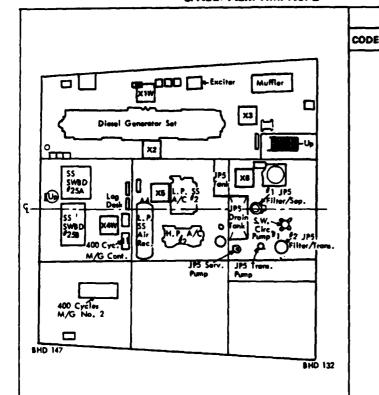
#### **DEFINITIONS & AMPLIFICATIONS**

| Reediness    | Cond. I - General Quarters Cond. III - Wartime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② Inter. ?   | Stands for "is the noise level intermittent?" The question mark (?) requires a "yes" or "no" answer. Intermittent noise is defined as the sound generated by mechinery which is cycled on and off and results in large fluctuations in noise levels (more than 5 dBA). |
| Comments     | Should be used to note faulty mechinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the messurement location.                                                                                                      |
| Mees. Lec.   | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                           |
| (5) Rate     | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boiler Tender, First Class-BT1.                                                                                                                                                        |
| Wear Prot. ? | Stands for "is the individual weering personal hearing protection?" such as earplugs or earmuffs. The question mark (?) requires an "yes" or "no" enswer.                                                                                                              |
| Watch Stand? | Stands for "is the individual a watch stander or a watch stander trainee?". The question mark (?) requires a "yes" or "no" answer.                                                                                                                                     |

Enter the number of hours (to closest X hour) that  $t_i$  individual works at location. If answer is "yes" to  ${\cal O}$  enter number of hours spent as a watch stander at lo-

Should be used to describe work task when appropriate.

(I) Hrs/Day at Lec.


(I) Comments

cation.

## **SOUND SURVEY FORM**

Page 9 of 12

| JODE         |                                            | GE                                 | NERAL IN | FORMAT | TION         |        | CODE | OPERATING CONDITIONS                                                    |     |        |                                             |  |  |
|--------------|--------------------------------------------|------------------------------------|----------|--------|--------------|--------|------|-------------------------------------------------------------------------|-----|--------|---------------------------------------------|--|--|
|              | Ship's<br>Surve<br>Time<br>Inspec<br>Meter | Surveye Name y Date of Day cted by | d        |        | /            |        |      | Readiness ®  Operating Mode (a) In-Port  (b) Underway  Diesel Generator |     |        | Cond. I Cond. III Cond. IV Cond. IV Cond. V |  |  |
| LOC.         | MEAS.                                      | dBA                                | INTER®   | cc     | SO<br>MMENTS | UND LE | LOC. | MEAS.                                                                   | dBA | INTER. | COMMENTS                                    |  |  |
| CODE         | LOC.                                       |                                    |          |        |              |        | 1000 |                                                                         |     |        |                                             |  |  |
|              | X1W                                        |                                    |          |        | <del></del>  |        |      | X6                                                                      |     |        |                                             |  |  |
| · · · -      | X2<br>X3                                   |                                    |          |        |              |        | -    |                                                                         |     |        |                                             |  |  |
|              | X4W                                        | <del></del>                        |          | •      | •            |        | †    |                                                                         |     |        |                                             |  |  |
|              | X5                                         |                                    |          |        |              |        |      |                                                                         |     |        |                                             |  |  |
| LOC.<br>CODE | MEAS. 40                                   | BILLET                             | RATEG    | WEARG  | WATCH Trans  |        |      | c. <b>®</b>                                                             |     | cc     | OMMENTS 9                                   |  |  |
|              |                                            |                                    |          |        |              |        |      |                                                                         |     |        |                                             |  |  |
| ·            |                                            |                                    |          |        |              |        |      |                                                                         |     |        |                                             |  |  |



| MACHINERY LINE-UP (OPTIONAL)                                                                                                                                                                                                                                  |      |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| DESCRIPTION                                                                                                                                                                                                                                                   | ONIV |  |  |  |  |  |  |
| S.S. Diesel Generator S.S. Diesel Generator S.W. Circulation Pump Fire Pump No. 4 JP-5 Transfer Pump No. 1 JP-5 Service Pump No. 1 JP-5 Service Filter/Separator No. 1 L.P. S.S. Air Compressor H.P. S.S. Air Compressor S.S. 400 Cycle Motor Generator No. 2 |      |  |  |  |  |  |  |
| ·                                                                                                                                                                                                                                                             |      |  |  |  |  |  |  |

| DE   | FINITION OF PERSONNEL R       | ATES     |
|------|-------------------------------|----------|
| RATE | RATE DESCRIPTION              | DIVISION |
| MMC  | Machinist Mate - Chief        | A        |
| MM1  | Machinist Mate - 1st Class    | A        |
| MM2  | Machinist Mate - 2nd Class    | A        |
| MM3  | Machinist Mate - 3rd Class    | A        |
| MMFN | Machinist Mate - Fireman      | A        |
| FN   | Fireman                       | A        |
| BTCM | Boiler Tender - Master Chief  | В        |
| BT1  | Boiler Tender - 1st Class     | 8        |
| BT2  | Boiler Tender - 2nd Class     | В        |
| BT3  | Boiler Tender - 3rd Class     | В        |
| BTFN | Boiler Tender - Fireman       | B        |
| EMC  | Electrician Mate - Chief      | E        |
| EM1  | Electrician Mate - 1st Class  | E        |
| EM2  | Electrician Mate - 2nd Class  | E        |
| EM3  | Electrician Mate - 3rd Class  | E        |
| EMFN | Electrician Mate - Fireman    | E        |
| MMCS | Machinist Mate - Senior Chief | M        |
| MM1  | Machinist Mate - 1st Class    | M        |
| MM2  | Machinist Mate - 2nd Class    | M        |
| MM3  | Machinist Mate - 3rd Class    | M        |
| MMFN | Machinist Mate - Fireman      | M        |
| FN   | Fireman                       | M        |

#### Cond. V - In-Port (2) later. ? Stands for "Is the noise level intermittent?" The question merk (?) requires a "yes" or "no" answer. Intermittent noise is defined as the sound generated by mechinery which is cycled on end off and results in lerge fluctuations in noise levels (more than 5 dBA). (3) Comments Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement loca-Moss. Loc. Enter the sound level measurement symbol which is located closest to the individual's position (see Figure). Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boller Tender, First Class-(I) Rate (I) Wear Frot. ? Stands for "is the individual wearing personal hearing

"yes" or "no" answer.

cation.

protection?" such as earplugs or earmuffs. The question mark (?) requires an "yes" or "no" enewer.

Stands for "is the individual a watch stander or a watch stander trainee?". The question mark (?) requires a

Enter the number of hours (to closest % hour) that t. individual works at location. If answer is "yes" to (2) enter number of hours spent as a watch stander at lo-

Should be used to describe work tesk when appropriate.

Cond. 1 - General Quarters Cond. 111 - Wartime Steaming Cond. 1V - Peacetime Steaming

**DEFINITIONS & AMPLIFICATIONS** 

- Walter Brook

(I) Comments

Watch Stand ?

(I) Hrs/Day at Lec.

(1) Readiness

# **SOUND SURVEY FORM**

Page 10 of 12

| CODE         |                                            | GENERAL INFORMATION                             |                                                  |                 |                |                                                  |                                                  |                                                       | OPERATING CONDITIONS                  |              |                                                                                                                                                                                                                              |  |
|--------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------|----------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|---------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              | Ship's<br>Surve<br>Time<br>Inspec<br>Meter | Surveyed<br>Name<br>y Date<br>of Day<br>cted by | 4                                                | FF1062 (<br>FDB | Rm. 1A         |                                                  |                                                  | Readiness ©  Operating Mode (a) In-Port  (b) Underway |                                       |              | Cond. I Cond. III Cond. IV Cond. IV Cond. V Cond. V Cond. V Cond. V Cold Iron Co |  |
|              |                                            |                                                 | INTER@                                           |                 | SO!            | UND LE                                           | VEL C                                            | ATA                                                   | dBA                                   | INTER.       |                                                                                                                                                                                                                              |  |
| LOC.         | MEAS.<br>LOC.                              | dBA                                             | NIERG                                            | ÇO              | MMEN 13        | •                                                | CODE                                             | LOC.                                                  | OBA                                   | ?            | COMMENTS                                                                                                                                                                                                                     |  |
|              | FA 1                                       |                                                 |                                                  |                 |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
| ļ            | FA 2                                       |                                                 |                                                  |                 |                |                                                  | <del>├</del>                                     |                                                       | <b></b>                               | <del> </del> |                                                                                                                                                                                                                              |  |
| <u> </u>     | FA 3                                       |                                                 |                                                  | <del> </del>    |                |                                                  | <del>                                     </del> |                                                       | <del> </del>                          | <del> </del> |                                                                                                                                                                                                                              |  |
|              |                                            | <del></del>                                     | -                                                | <del></del>     | <u></u>        |                                                  |                                                  |                                                       | <u> </u>                              | <u> </u>     |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 | 1 6                                              | T               | ERSONN         |                                                  |                                                  |                                                       | ATA                                   |              |                                                                                                                                                                                                                              |  |
| LOC.<br>CODE | MEAS. 1                                    | BILLET                                          | RATE                                             | PROT.           | WATCH To STAND | WORK                                             | WATC                                             | _                                                     |                                       |              | MMENTS <sup>®</sup>                                                                                                                                                                                                          |  |
| ļ            |                                            |                                                 |                                                  |                 |                |                                                  |                                                  | _                                                     |                                       |              |                                                                                                                                                                                                                              |  |
| }            | ļ                                          | <u> </u>                                        | <del> </del>                                     | -               |                | <del>                                     </del> |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
| ļ <u>.</u>   |                                            |                                                 | +                                                | -               |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  |                                                  |                                                       |                                       |              | <del> </del>                                                                                                                                                                                                                 |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  |                                                  | -                                                     |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 | <del>                                     </del> |                 |                |                                                  |                                                  | _                                                     |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 | <del> </del>                                     |                 |                | ├                                                |                                                  |                                                       | · · · · · · · · · · · · · · · · · · · |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 | +                                                |                 |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
| <del></del>  |                                            |                                                 | <del> </del>                                     |                 |                | <del>                                     </del> |                                                  | +                                                     |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  | _                                                |                                                       |                                       |              |                                                                                                                                                                                                                              |  |
|              |                                            |                                                 |                                                  |                 |                |                                                  |                                                  |                                                       |                                       |              |                                                                                                                                                                                                                              |  |

| SPACE: PU                                                                                                                                         | B RM. IA                      |             |                                                                                                                                                                                                                         |                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                   |                               |             | MACHINERY LINE-UP (OPTIONAL)                                                                                                                                                                                            |                                            |
|                                                                                                                                                   |                               | CODE        | DESCRIPTION                                                                                                                                                                                                             | ON                                         |
| Droft<br>Blower<br>1A - 1                                                                                                                         | orce<br>raft<br>ower<br>A - 2 | 1 1 1       | orce Draft Blower 1A-1 orce Draft Blower 1A-2                                                                                                                                                                           |                                            |
| >                                                                                                                                                 |                               |             |                                                                                                                                                                                                                         |                                            |
| DEFINITION OF PERSONNEL RA                                                                                                                        | ATES                          |             | DEFINITIONS & AMPLIFICATIONS                                                                                                                                                                                            | 3                                          |
| RATE RATE DESCRIPTION  MMC Machinist Mate - Chief  MM1 Machinist Mate - 1st Class  MM2 Machinist Mate - 2nd Class  MM3 Machinist Mate - 3rd Class | DIVISION A A A                | ① Readiness | Cond. 1 - General Quarters Cond. III - Wartime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                 |                                            |
| MMFN Machinist Mate - Fireman FN Fireman  BTCM Boiler Tender - Master Chief BT1 Borler Tender - 1st Class                                         |                               | 2) Inter. ? | Stands for "Is the noise level intermittent?" tion mark (?) requires a "yes" or "no" and mittent noise is defined as the sound ge machinery which is cycled on and off and lerge fluctuations in noise levels (more the | ower. Inter-<br>nerated by<br>d results in |
| BT2 Boiler Tender - 2nd Class BT3 Boiler Tender - 3rd Class BTFN Boiler Tender - Fireman                                                          |                               | D Commont   | Should be used to note faulty mechinery or factor that, by inspection, may be responsionable unusual noise environment at the messuration.                                                                              | sible for a                                |
| EMC Electrician Mate - Chief EM1 Electrician Mate - 1st Class                                                                                     | E (                           | Mees. Le    | Enter the sound level measurement symbolic located closest to the individual's position (s                                                                                                                              |                                            |
| EM2 Electrician Mate - 2nd Class EM3 Electrician Mate - 3rd Class EMFN Electrician Mate - Fireman                                                 |                               | D) Rate     | Enter individual's rate abbreviation as sho<br>personnel rate table; i.e. Boiler Tender, F<br>BT1.                                                                                                                      | wn on the                                  |
| MMCS Machinist Mate - Senior Chief<br>MM1 Machinist Mate - 1st Class                                                                              | M<br>M                        | D Wear Prot | t. ? Stands for "Is the individual wearing perso protection?" such as earplugs or earmuffs. Ti mark (?) requires an "yes" or "no" enswer.                                                                               | he questio                                 |
| MM2 Machinist Mate - 2nd Class MM3 Machinist Mate - 3rd Class MMFN Machinist Mate - Firemen                                                       | M<br>M<br>M                   | D Wetch Sta | • • • • •                                                                                                                                                                                                               | r or a web                                 |
| MMFN Machinist Mate - Fireman                                                                                                                     |                               |             | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                 |                                            |
| FN Fireman                                                                                                                                        | M                             | D Hrs/Day ( | It Lec. Enter the number of hours (to closest X hou<br>individual works at location, if ensure is<br>enter number of hours spent as a watch at<br>eation.                                                               | "yes" to                                   |

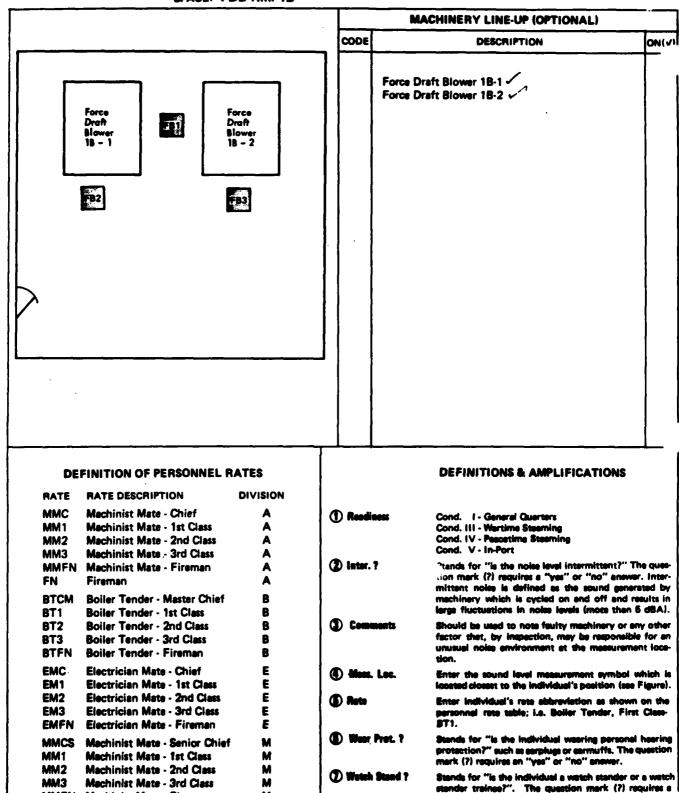
| ODE                    |               | GE                       | NERAL IN     | FORMAT                                           | TION             |             | CODE         |               | 0           | PERATIN                                          | IG CONDITIONS                           |
|------------------------|---------------|--------------------------|--------------|--------------------------------------------------|------------------|-------------|--------------|---------------|-------------|--------------------------------------------------|-----------------------------------------|
|                        | Space         | Class<br>Surveye<br>Name |              | F1052<br>FDI                                     | KNOX<br>B Rm. 11 | 3           |              |               | erating Mo  | ode                                              | Cond. IU□ Cond. III□ Cond. IV□ Cond. V□ |
| -                      | 1             | y Date                   |              |                                                  | 7                |             |              | T .           | ) In-Port   |                                                  | Cold Iron                               |
|                        | - 1           | of Day                   | 1            |                                                  |                  |             |              | "             | ,,          |                                                  | Aux. Steaming                           |
|                        |               | ted by                   |              |                                                  |                  |             | 1            | l a           | ) Underw    | /av                                              | Speedkts                                |
| Į.                     | Meter         |                          |              |                                                  |                  |             |              | ``            | ,           |                                                  | Shaftrpm                                |
|                        |               | Number                   | -            |                                                  |                  |             |              |               |             |                                                  |                                         |
|                        |               |                          | INTER 2      |                                                  | SO               | UND LI      | <del></del>  |               |             | Luces                                            |                                         |
| LOC.                   | MEAS.<br>LOC. | dBA                      | INTER®       |                                                  |                  | <u> </u>    | LOC.<br>CODE | MEAS.<br>LOC. | dBA         | INTER.                                           | COMMENTS                                |
|                        | FB 1          |                          |              |                                                  |                  | <del></del> | ļ            |               |             | ļ <u>.</u>                                       |                                         |
|                        | FB 2          |                          |              |                                                  |                  |             | 1            |               |             |                                                  |                                         |
|                        | FB3           |                          | _            | =                                                |                  | -           | -            |               |             | ļ                                                |                                         |
|                        |               |                          |              |                                                  |                  |             | -            |               |             | <del>                                     </del> | -                                       |
| LOC                    | MEAS.         | BILLET                   | RATE 6       | WEAR 6                                           | ERSONN<br>WATCH® |             |              | -             | ATA         | co                                               | DMMENTS 9                               |
| CODE                   | LOC.          | TITLE                    |              | PROT.                                            | STAND            | WORK        | WATC         | _             |             |                                                  |                                         |
|                        |               |                          |              |                                                  |                  |             |              |               |             |                                                  |                                         |
|                        |               |                          |              |                                                  |                  |             |              |               |             |                                                  |                                         |
|                        |               |                          |              |                                                  |                  |             |              |               |             |                                                  |                                         |
|                        |               |                          |              |                                                  |                  |             |              |               | ·           |                                                  |                                         |
|                        |               |                          | <u> </u>     |                                                  |                  |             |              |               |             |                                                  |                                         |
| <u> </u>               |               |                          | <del> </del> |                                                  |                  |             |              |               |             |                                                  |                                         |
| $\vdash \vdash \vdash$ |               |                          | +            |                                                  |                  |             |              | _   .         | <del></del> |                                                  |                                         |
| <b> </b>               |               |                          |              | <del>                                     </del> |                  |             |              | _             |             |                                                  |                                         |
| <b> </b>               |               |                          | <del></del>  | -                                                |                  |             | <del></del>  |               |             |                                                  | <del></del>                             |
| $\vdash \vdash \vdash$ |               |                          | _            |                                                  |                  |             |              |               |             |                                                  |                                         |
|                        |               |                          | +            |                                                  |                  |             |              |               |             | <del></del>                                      |                                         |
|                        |               |                          |              | <b>—</b>                                         |                  |             | ·            |               |             | <del></del>                                      | · · · · · · · · · · · · · · · · · · ·   |
|                        |               |                          | +            |                                                  |                  |             |              |               |             |                                                  |                                         |
|                        |               |                          | 1            |                                                  |                  |             |              |               |             |                                                  |                                         |
| :                      |               |                          | <del> </del> | <del>                                     </del> |                  | <del></del> |              |               |             |                                                  | <del></del>                             |
|                        |               |                          | l l          |                                                  |                  | l l         |              | - 1           |             |                                                  |                                         |

MMFN Machinist Mate - Fireman

Firemen

FN

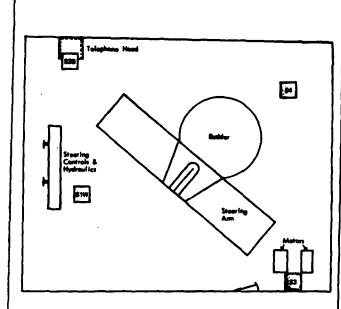
M


(I) Hrs/Day at Lee.

(I) Comments

"yes" or "no" enewer.

Enter the number of hours (to closest % hour) that it. Individual works at location. If enswer is "yes" to 🗘 enter number of hours spent as a wetch stander at lo-


Should be used to describe work task when appropriate.



# **SOUND SURVEY FORM**

Page 12 of 12

| JODE                                             |                                                  | GE              | NERAL IN     | FORMAT                                           | TION              |                | CODE         | :             | OI            | PERATIN      | IG CONDITIONS                             |
|--------------------------------------------------|--------------------------------------------------|-----------------|--------------|--------------------------------------------------|-------------------|----------------|--------------|---------------|---------------|--------------|-------------------------------------------|
|                                                  |                                                  | Surveye         |              | F1052<br>Afte                                    | KNOX<br>r Steerin | 9              |              |               | diness ①      | ·            | Cond. I□ Cond. III□<br>Cond. IV□ Cond. V□ |
|                                                  | 1                                                | Name            | [-           |                                                  |                   |                | ĺ            | 1             | erating Mo    | ide          | <b>-</b>                                  |
|                                                  | l l                                              | y Date          | -            |                                                  |                   |                |              | 8) (8         | ) In-Port     | 1            | Cold Iron                                 |
| }                                                |                                                  | of Day          | -            | <del></del>                                      |                   |                |              | ١,,           |               |              | Aux. Steaming                             |
| Ì                                                | 1 '                                              | ted by          | ] -          |                                                  |                   |                |              | (t            | ) Underw      | ay           | Speedkts                                  |
| -                                                | Meter                                            |                 | -            |                                                  |                   |                |              |               |               |              | Shaftrpm                                  |
| ļ                                                | Serial                                           | Number          |              |                                                  |                   |                |              |               |               |              | · · · · · · · · · · · · · · · · · · ·     |
|                                                  | r r                                              |                 |              |                                                  |                   | UND LE         | · · · · ·    |               | <del></del> - | <del>,</del> |                                           |
| LOC.<br>CODE                                     | MEAS.<br>LOC.                                    | dBA             | INTER®       | co                                               | MMENTS (          | <b>3</b> )<br> | LOC.<br>CODE | MEAS.<br>LOC. | dBA           | INTER.       | COMMENTS                                  |
|                                                  | S1W                                              |                 |              |                                                  |                   |                |              |               |               |              |                                           |
|                                                  | S2B                                              |                 |              |                                                  |                   |                |              |               |               |              |                                           |
|                                                  | <b>S3</b>                                        |                 |              |                                                  |                   |                |              |               |               |              |                                           |
|                                                  | S4                                               |                 |              |                                                  |                   |                | <u> </u>     |               |               |              |                                           |
|                                                  |                                                  |                 |              |                                                  |                   |                |              |               |               |              |                                           |
|                                                  | <del> — —</del>                                  |                 | <u> </u>     |                                                  | ERSONN            |                |              | <del></del>   | ATA           |              |                                           |
| LOC.                                             | MEAS.                                            | BILLET<br>TITLE | RATEG        | WEAR 6                                           | WATCHO            |                |              | _             |               | CC           | MMENTS 9                                  |
|                                                  | 200.                                             |                 |              | 77                                               | 7,7,0             | WORK           | WATC         | H             |               |              |                                           |
|                                                  | ļ                                                |                 | <u> </u>     |                                                  |                   |                | · .          |               |               |              | · · · · · · · · · · · · · · · · · · ·     |
|                                                  | ļ                                                | ļ <u>-</u> -    |              | ļ                                                | ļ                 |                |              |               |               |              |                                           |
|                                                  |                                                  |                 | <b></b>      | ļ                                                |                   |                |              | _             |               |              |                                           |
|                                                  |                                                  |                 |              | ļ                                                |                   |                |              | $\dashv$      |               |              |                                           |
|                                                  | ļ                                                |                 | +            | <b> </b>                                         |                   |                |              |               | <del></del>   |              |                                           |
|                                                  | _                                                |                 | <b>_</b>     | <b></b>                                          |                   | <b>  </b>      |              |               |               |              |                                           |
|                                                  | <b></b>                                          |                 |              |                                                  |                   |                |              |               |               |              |                                           |
|                                                  | <del>                                     </del> |                 | <del> </del> | <del> </del>                                     |                   | <del>  </del>  |              |               |               |              | <u> </u>                                  |
| <del> </del>                                     | <del> </del>                                     |                 | +            | <b></b>                                          |                   |                |              |               | <del></del>   |              |                                           |
|                                                  | <del>                                     </del> |                 | +            | -                                                |                   |                |              | -+-           |               |              |                                           |
| <u> </u>                                         |                                                  |                 | +            |                                                  |                   |                |              | $\dashv$      |               |              | <u> </u>                                  |
| <del>                                     </del> | <del>                                     </del> |                 | +            | <del> </del> -                                   |                   | $\vdash$       |              | -+-           |               |              | · · · · · · · · · · · · · · · · · · ·     |
| <del> </del>                                     |                                                  | ,               | +            |                                                  |                   | <del>  </del>  |              | +             |               |              |                                           |
| <del>}                                    </del> | -                                                |                 | +            | <del>                                     </del> |                   | <del> </del>   |              | $\rightarrow$ |               | <u> </u>     |                                           |
| , —                                              |                                                  | -               | +            |                                                  |                   | <del>  </del>  |              | $\dashv$      |               |              |                                           |
| }                                                |                                                  |                 | +            | <del>                                     </del> |                   |                |              | +             |               |              |                                           |
| L                                                | L                                                | L.              |              | L                                                | l                 | L,             |              |               |               |              |                                           |



|     | MACHINERY LINE-UP (OPTIONAL                            | )  |
|-----|--------------------------------------------------------|----|
| ∞DE | DESCRIPTION                                            | ON |
|     | Steering Gear Motor No. 1<br>Steering Gear Motor No. 2 |    |
|     |                                                        |    |
|     |                                                        |    |
|     | •                                                      |    |
|     |                                                        | ,  |
|     |                                                        |    |

٠.

4

# **DEFINITION OF PERSONNEL RATES**

| RATE DESCRIPTION              | DIVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machinist Mate - Chief        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Machinist Mate - 1st Class    | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fireman                       | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Boiler Tender - Master Chief  | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Boiler Tender - 1st Class     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Boiler Tender - 2nd Class     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Boiler Tender - 3rd Class     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Boiler Tender - Fireman       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrician Mate - Chief      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrician Mate - 1st Class  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrician Mate - 2nd Class  | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrician Mate - 3rd Class  | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrician Mata - Fireman    | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Machinist Mate - Senior Chief | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Firemen                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Machinist Mate - Chief Machinist Mate - 1st Class Machinist Mate - 2nd Class Machinist Mate - 3rd Class Machinist Mate - Fireman Fireman Boiler Tender - Master Chief Boiler Tender - 1st Class Boiler Tender - 2nd Class Boiler Tender - 3rd Class Boiler Tender - Fireman Electrician Mate - Chief Electrician Mate - 1st Class Electrician Mate - 3rd Class Electrician Mate - 3rd Class Electrician Mate - 3rd Class Electrician Mate - Senior Chief Machinist Mate - 1st Class Machinist Mate - 2nd Class Machinist Mate - 3rd Class Machinist Mate - Fireman |

# DEFINITIONS & AMPLIFICATIONS

Cond. ( - General Querters Cond. III - Wartime Steaming Cond. IV - Peacetime Steaming Cond. V - In-Port

(1) Reediness

(1) Commonts

well and the second

| (2) Inter. ?     | Stands for "is the noise level intermittent?" The question mark (?) requires a "yes" or "no" answer, intermittent noise is defined as the sound generated by machinery which is cycled on and off and results in large fluctuations in noise levels (more than 5 dBA). |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3) Comments      | Should be used to note faulty mechinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                      |
| Meas. Loc.       | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                           |
| (5) Rate         | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boller Tender, First Class-BT1.                                                                                                                                                        |
| Weer Prot. ?     | Stands for "is the individual wearing personal hearing protection?" such as earplugs or earmuffs. The question mark (?) requires an "yes" or "no" enswer.                                                                                                              |
| Watch Stand ?    | Stands for "Is the individual a watch stander or a watch stander traines?". The question mark (?) requires a "yes" or "no" enswer.                                                                                                                                     |
| Thrs/Day at Lac. | Enter the number of hours (so closest % hour) that to individual works at location. If enswer is "yes" to ①                                                                                                                                                            |

cetion.

enter number of hours spent as a watch stander at lo-

Should be used to describe work task when appropriate.

# APPENDIX C

Shipboard Sound Survey Procedure

Project No. 09168

BOLT BERANEK AND NEWMAN INC.

# SHIPBOARD SOUND SURVEY PROCEDURE

Prepared under Contract No. N00014-78-C-0408 "Development and Validation of Shipboard Noise Exposure Data Aquisition Procedures"

For the:

Naval Medical Research and Development Command National Naval Medical Center

Prepared by:

Bolt Beranek and Newman Inc. Canoga Park, California 91303

November 15, 1978

# 1. OBJECTIVE

The objective of this shipboard sound survey procedure is to provide for a uniform method of sound level data collection which is consistent with the requirements of a Navy Noise Exposure Data Management System under study.

#### 2. APPLICABILITY SCOPE AND LIMITATIONS

This sound survey procedure is limited to the FF1052 class (Knox) ships and further to the engineering spaces only. In its current version, the procedure will be implemented for a three month period by the EPMU-2 (Norfolk, Va.) and EPMU-5 (San Diego, Ca.) units during routine inspections of the Knox class. The data gathered will be used to examine the validity and accuracy of the noise exposure management system under study. Only the In-Port-Auxiliary Steaming ship operating condition will be surveyed although the procedure is designed to be applicable to any operating mode.

#### 3. SOUND SURVEY FORMS

The Sound Survey Forms, (SSF) developed incorporate all of the data routinely collected by the EPMU's and has been designed to follow normal survey procedures. Each Form is printed front and back on a single page as shown in Figure 1 and is divided into two parts:

- 1. Front Side: the front side of the page contains all of the data entries required in the survey.
- 2. <u>Back Side</u>: the back side of the page contains support information to the survey procedure, symbol definitions and clarifications.

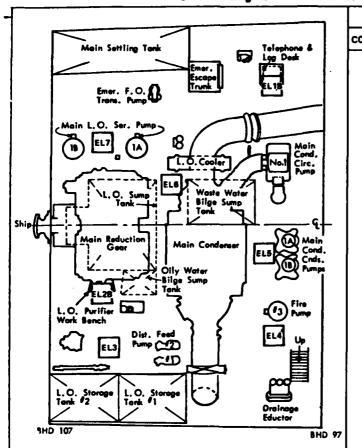
Each sound survey form is specific as to: a) the ship class and b) the ship space. Therefore, in the case of the FF.1052 (Knox) class, a full compliment of Sound Survey Forms, one for each engineering space and level, is provided and should be used (12 pages in total).

#### 4. Survey Procedure

The front page is divided into four sections as follows:

- 1. General Information: includes ship, date, inspector, and equipment identification questions.
- 2. Operating Conditions: defines the ship operating conditions during the survey.
- 3. Sound Level Data: contains the acoustic (noise) data entries required in each space.
- 4. <u>Personnel Assignment Data:</u> contains the parameters necessary to describe the personnel time-work task data.

# 4.1 General Information


- . Ship's Class: already identified, in this case as FF1052-Knox.
- . Space Surveyed: already identified, select the Sound Survey Form that corresponds to the space being surveyed.
- . Ship's Name: enter the name and number of ship being inspected; i.e. U.S. Paul, FF1080.
- . Survey Date: enter date of survey.
- . Time of Day: enter time of survey.

# **SOUND SURVEY FORM**

Page 1 of 12

| ;ODE         |               | GE                                    | NERAL IN    | FORMA              | TION            |               | CODE         | :          | O           | PERATIN     | G CONDITIONS                        |
|--------------|---------------|---------------------------------------|-------------|--------------------|-----------------|---------------|--------------|------------|-------------|-------------|-------------------------------------|
|              | Space         | Class<br>Surveye                      |             | FF1052<br>Engine F | KNOX<br>lm. Low | er Level      |              | Rea        | diness Φ    |             | Cond. I Cond. III Cond. IV Cond. IV |
| I            | Ship's        | Name                                  | -           |                    |                 |               | .            | Оре        | erating Mo  | de          |                                     |
|              | Surve         | y Date                                | -           |                    |                 |               | .            | (a         | ) In-Port   | 1           | Cold Iron                           |
|              | Time          | of Day                                | -           |                    |                 |               | 1            |            |             | 1           | Aux. Steaming □                     |
| }            | Inspec        | cted by                               | -           |                    |                 |               | 1            | (t         | ) Underw    | ay          | Speedkts                            |
| ļ            | Meter         | Type                                  | j           |                    |                 |               | 1            |            |             |             | Shaftrpm                            |
|              | Serial        | Number                                |             | <del></del>        |                 |               |              |            |             |             |                                     |
|              | · · · · · · · |                                       |             |                    |                 | UND LE        | VEL D        | ATA        |             |             |                                     |
| LOC.<br>CODE | MEAS.<br>LOC. | dBA                                   | INTER®      | CC                 | MMENTS          | <b>③</b>      | LOC.<br>CODE | MEAS.      | dBA         | INTER.      | COMMENTS                            |
|              | EL1B          |                                       |             |                    |                 |               |              | EL6        |             |             |                                     |
|              | EL2B          |                                       |             |                    |                 |               |              | EL7        |             |             |                                     |
|              | EL3           |                                       |             |                    |                 |               |              |            |             |             |                                     |
|              | EL4           |                                       |             |                    |                 |               |              |            |             |             |                                     |
|              | EL5           |                                       |             |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       |             | Pi                 | ERSONN          | IEL ASS       | SIGNM        | ENT D      | ATA         |             |                                     |
| LOC.         | MEAS.         | BILLET                                | RATE        | WEAR 6             | WATCH®          | HRS./DA       | Y AT LO      | <b>.</b> 8 |             | co          | MMENTS 9                            |
|              | 200.          |                                       |             | 7                  | 7,70            | WORK          | WATC         | Н          |             |             |                                     |
| <u> </u>     |               |                                       | <u> </u>    |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       |             |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       | <b>_</b>    |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       |             |                    |                 | <b>  </b>     |              |            |             |             |                                     |
|              |               |                                       |             |                    |                 | <u> </u>      |              |            |             |             |                                     |
|              |               | · · · · · · · · · · · · · · · · · · · |             | <b>!</b>           |                 |               |              |            |             |             |                                     |
|              |               |                                       |             |                    |                 |               |              |            |             |             |                                     |
|              |               | _                                     |             | <b> </b>           |                 | <del>  </del> |              |            |             |             |                                     |
|              |               |                                       | <del></del> |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       | <del></del> |                    |                 |               |              |            |             | <del></del> |                                     |
|              |               | <del></del>                           | <del></del> |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       |             |                    |                 | ├             |              | -          |             |             |                                     |
|              |               |                                       | <del></del> |                    |                 |               |              |            |             |             |                                     |
| ·            |               |                                       | <del></del> |                    |                 |               |              |            |             |             |                                     |
|              |               |                                       | <del></del> | <b></b>            |                 |               |              | _}_        |             |             |                                     |
|              |               | <del></del> -                         | +           |                    |                 | ├             |              | -+-        | <del></del> |             |                                     |
| <u> </u>     |               |                                       |             | L                  |                 |               |              |            |             |             |                                     |

# SPACE: Engine Rm. Lower Level



| ABI |                                                                                                                                                                                                                                                                                                        |       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | MACHINERY LINE-UP (OPTIONAL)                                                                                                                                                                                                                                                                           |       |
| ODE | DESCRIPTION                                                                                                                                                                                                                                                                                            | ON(~) |
|     | Main Reduction Gear Main Condensate Pump 1A Main Condensate Pump 1B Fire Pump No. 3 Main Condensate Circulation Pump No. 1 Main L.O. Service Pump 1A Main L.O. Service Pump 1B L.O. Purifier No. 1 Distillate Feed Pump No. 1 Distillate Feed Pump No. 2 Drainage Eductor Emergency F.O. Transfer Pump |       |

#### **DEFINITION OF PERSONNEL RATES**

| RATE  | RATE DESCRIPTION              | DIVISION |
|-------|-------------------------------|----------|
| MMC   | Machinist Mate - Chief        | A        |
| MM1   | Machinist Mate - 1st Class    | A        |
| MM2   | Machinist Mate - 2nd Class    | Α        |
| MM3   | Machinist Mate - 3rd Class    | A        |
| MMFN  | Machinist Mate - Fireman      | A        |
| FN    | Fireman                       | A        |
| BTCM  | Boiler Tender - Master Chief  | В        |
| BT1   | Boiler Tender - 1st Class     | В        |
| BT2   | Boiler Tender - 2nd Class     | В        |
| BT3   | Boiler Tender - 3rd Class     | 8        |
| BTFN  | Boiler Tender - Fireman       | В        |
| EMC   | Electrician Mate - Chief      | E        |
| EM1   | Electrician Mate - 1st Class  | E        |
| EM2   | Electrician Mate - 2nd Class  | E        |
| EM3   | Electrician Mate - 3rd Class  | E        |
| EMFN. | Electrician Mate - Fireman    | E        |
| MMCS  | Machinist Mate - Senior Chief | M        |
| MM1   | Machinist Mate - 1st Class    | M        |
| MM2   | Machinist Mate - 2nd Class    | M        |
| MM3   | Machinist Mate - 3rd Class    | M        |
| MMFN  | Machinist Mate - Fireman      | M        |
| FN    | Fireman                       | M        |

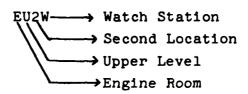
#### **DEFINITIONS & AMPLIFICATIONS**

| ① Readiness       | Cond. I - General Quarters Cond. III - Wartime Steeming Cond. IV - Peacetime Steeming Cond. V - In-Port                                                                                                                                                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ② Inter. ?        | Stands for "is the noise level intermittent?" The question mark (?) requires a "yes" or "no" answer. Intermittent noise is defined as the sound generated by machinery which is cycled on and off and results in lerge fluctuations in noise levels (more than 5 dBA). |
| 3 Comments        | Should be used to note faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.                                                                                                      |
| Meas. Lec.        | Enter the sound level measurement symbol which is located closest to the individual's position (see Figure).                                                                                                                                                           |
| (5) Rate          | Enter individual's rate abbreviation as shown on the personnel rate table; i.e. Boiler Tender, First Class-BT1.                                                                                                                                                        |
| Weer Prot. ?      | Stands for "is the individual wearing personal hearing protection?" such as earplugs or earmuffs. The question mark (?) requires an "yes" or "no" enswer.                                                                                                              |
| Watch Stand ?     | Stands for "Is the individual a watch stander or a watch<br>stander trainee?". The question mark (?) requires a<br>"yes" or "no" answer.                                                                                                                               |
| Thrs/Day at Loc.  | Enter the number of hours (to closest % hour) that the individual works at location. If answer is "yes" to number of hours spent as a watch stander at location.                                                                                                       |
| <b>①</b> Comments | Should be used to describe work task when appropriate.                                                                                                                                                                                                                 |

- ' Inspected by: enter initials and last name of individual performing the survey.
- \* Meter Type: enter the make and model number of sound survey meter being used, i.e. General Radio 1565B.
- \* Serial Number: enter serial number of sound survey meter used.

# 4.2 Operating Conditions

- Readiness: enter the ship's readiness condition by checking one of the four condition boxes. The superscript refers to the Definitions and Amplifications section contained on the back side of the form.
- \* Operating Mode: the operating mode of the ship may be either a) In-Port or b) Underway as shown. If In-Port, check either Cold Iron or Auxiliary Steaming as appropriate. If Underway, enter the speed and shaft rpm.


Note that this program is concerned only with the <u>Auxiliary</u>
<u>Steaming</u> operating mode, therefore all data collected should be under this operating condition.

- Praire Masker: in fire room spaces only. This system is used infrequently and only in the Underway mode. Since it's operation affects substantially the noise levels measured in these spaces, it is necessary to identify if the system is "on" or "off".
- Diesel Generator: in auxiliary room No. 2 only. The operation of the diesel generator is infrequent and affects substaintially the noise levels measured in this space. Therefore, it is necessary to identify if the system is "on" or "off".

# 4.3 Sound Level Data

\*Measurement Locations: already identified. Locate the measurement location identified by referring to the space floor plan contained on the back side of the survey form.

The measurement location symbol is shown in a square. The symbols used indicate the compartment, the level, the location number and whatever the location is a watch station (W) or a work bench or telephone (B) area, as follows:



- \* dBA: enter the measured "A-weighted" sound level. The measurement should be performed at ear height. Some spatial averaging should be obtained by slowly moving the meter horizontally from side to side (see Section 5 for further instructions).
- Inter?: Stands for "is the noise level intermittent?".

  The question mark (?) requires a "yes" or "no" answer.

  Intermittent noise is defined as the sound generated by machinery which are cycled on and off and results in large fluctuations in noise levels (more than 5 dBA).
- \*Comments: use to note any faulty machinery or any other factor that, by inspection, may be responsible for an unusual noise environment at the measurement location.

  Should be also used to note large temporal or spatial noise level fluctuations (see Section 5).

# 4.4 <u>Personnel Assignment Data</u>

The objective of this section is to acquire personnel work assignment data that may be used to establish a statistical time-motion description of all engineering personnel work assignments on the ship. The key to this end is the identification of the engineering space personnel and the time spent at each of sound measurement locations surveyed. This type of information has not been previously collected by EPMU personnel and represents an addition to present practice. During the survey procedure, and more specifically while in the process of conducting the sound level measurements, the inspector will question any engineering personnel present in the space being surveyed. The personnel questioned will be limited to those individuals found during the performance of the sound level survey and no effort should be expended to locate all engineering personnel. The following information should be recorded:

- . Meas. Loc.: enter the sound measurement location symbol from the Sound Level Data portion of the form which is closest to the individual's position. The sound measurement locations are shown on the space floor plan. These inputs establish a unique correlation between a position in the space (and therefore noise level) and the individual.
- . Billet Title: ask the individual and enter his billet title.
- . Rate: ask the individual and enter his rate. The definition of personnel rates with their corresponding abbreviations are provided on the back side of the form.
- . Wear Prot.?: stands for "is the individual wearing personal

hearing protection" such as earplugs or earmuffs. The question mark (?) requires a "yes" or "no" answer.

Watch Stand?: stands for "is the individual a watch stander or a watch stander trainee?". Note that the question pertains only to the work assignment the individual is performing at the time. The question mark (?) requires a "yes" or "no" answer.

Hrs./day at Loc.: enter the number of hours (to the closest 1/4 of an hour) that the individual works at location under the work column. If the answer to the previous question is "yes" (the individual is a watch stander or watch stander trainee) then enter the number of hours as a watch stander.

'Comments: when the individual is performing work tasks, describe his function as appropriate, i.e. fixing oil pump, painting, etc.

Note: all numbers in O refer to the Definitions and Amplifications section presented on the back of the form. This information is provided in an effort to make each form self-explanatory.

The back side of the form contains one additional entry. This entry called "Machinery Line-Up" contains the description of all major machinery units associated with noise generation and deceipted picturally in the floor plan. The inspector is asked (on an optional basis) to identify the equipment on-line by a check mark in the appropriate space.

# 5. Sound Measurement Procedure

In order to ensure a uniform sound level data measurement procedure the following steps should be followed during the survey:

- 1. Locate measurement location by referring to the space floor plan contained on the back side of the survey form.
- 2. Using a calibrated sound level meter, measure the <u>average</u>
  "A-weighted" sound level (dBA) at the measurement location.
  The meter should be turned on the "A scale" and "slow"
  response. (The latter applies only to meters having a slow and fast meter averaging networks).
- 3. The averaging of the sound level data should be made in both the "temporal" and spatial domain. Temporal Averaging is accomplished by visually averaging any meter fluctuation over a period of time (a minimum of 15 seconds). Spatial averaging is accomplished by slowly moving the meter in a horizontal plane from side to side, as shown in Figure 2 and visually averaging any meter fluctuations.
- 4. If sound level fluctuations exceed ±3 dBA, note so in the comments column, i.e. noise levels fluctuate ±5 dBA.

# 6. Additional Data Requirements

The above procedures are descriptive of the survey steps which will be followed during routine surveys of this class. For evaluation purposes the time and difficulty of following those steps needs to be assessed. The individual performing the survey should make notes as to the following items:

- 1. The total time necessary to complete the survey and how that compares to previous procedures.
- The difficulties encountered in following the procedure.
   Be specific as to the problem areas so that changes may be designed later.

L

3. Any other information that can serve to evaluate and improve the procedure.

The above comments and the results of personal debriefings which will be conducted by BBN at the conclusion of the data collection program will be used to assess the practicality of this procedures and to the develop any changes and modifications.

As was discussed previously, the collection of personnel assignment data is a new and key part of the noise exposure data system. Since during the three month period of this survey only a limited number of ships will be surveyed, it is necessary to aquire further data on that subject. Specifically, the individual assignments of all engineering personnel during a one day period will have to be assessed. Thus, although the normal procedure relied on the statistics of many ship measurements to describe the daily work assignment of various personnel ratings, this study will require a full documentation on personnel movements in order to evaluate the accuracy of the method with a limited data base.

The method necessary to aquire this information is discussed below and utilizes the form shown on Figure 3 which is filled with an example.

- 1. Locate, if possible, all engineering personnel as described in the Definitions of Personnel Rates presented on the back of the Sound Survey Form. Each individual should be asked the following questions:
  - a. Billet Title
  - b. Rate
  - c. Note if he is wearing hearing protective equipment.

Note: All questions as to personnel movements will be addressed to the previous day. This will maximize accurate recolection and ensure that a full workday is included.

WENK HESTGINAEN DAIN

.

.

Shir . Namo. Flar. 7-63. Aur. Survey Date: No. 0.1978

Work Day Hotel Fr 8.0 12.0 9.0 0,1978 FL6; FL38; FL10; FL9; FUS; FU7; \$6. Locations WORK ASSIGNMENT DATA AQUISITION FIGURE 3 - EXAMPLE OF PERSONNEL FL7; FUG; FS1 Work Tasks 1.0, 2.0, 0.5; 05, 2.0; 2.0; Hrs. 3.0, 4.0, 1.0; Location F1 12 Watch Stander 8.0 4.0 Hrs. Yes - No Wear Hearing Protect. Xe - Se Yes - No Xes - 26 Yes - No % - Se X Xes - 26 Yes - No Yes - No Yes - No Yes - No Xes - No Yes - No BTFN BTFN 873 合。 F1052 C. Billet Tirle 24 907 25104 25108

2. Was he a "Watch Stander"? If yes, enter the number of hours spent and the measurement location code closest to the watch station.

Note: Since all watch stations have been identified on the Sound Survey Forms, the inspector should be able to identify the watch station by referring to the proper floor plan.

3. Ask the individual to recount his work duties on the previous day exclusive of the watch stander assignment. Similarly to the watch stander procedure, enter the number of hours (to the closest 1/2 hour) and measurement location code for each work area. In the first line of our example, the BTFN Rate spent 3.0 hours at location FL7, 4.0 hours at location FV6, and 1.0 hours at location FS1. Entries should be made consecutively as shown in the example with the total number of hours in the workday corresponding to the addition of the individual's watch stander and other work task duties.

#### APPENDIX D

# Personnel Work Assignments

The decimal numbers in the table are the hours assigned to each location for the particular personnel grade. The integer numbers in brackets are the number of personnel in the particular grade who were assigned to the location.

| Fths.      | ASSIGN C                                | 44.44   | 4 2 3 4 4  | FF=1184       | F.F.= 4 0940 | AL IN AN        | F5510MM   | *1 11 FE >       | 1145 VIII   | . NUMBER           | (III) 1<br>14-100 | 18044   | **-**        |
|------------|-----------------------------------------|---------|------------|---------------|--------------|-----------------|-----------|------------------|-------------|--------------------|-------------------|---------|--------------|
|            |                                         |         |            |               | 4.336        |                 |           | 7.44.7           | £ £ £ £ 0.0 | 10.0121            | 1010.0            | 1917-0  | ( ) 00%      |
| 71.8       | # F 7                                   | 11101   |            |               | 101010       | 45 00 4         | 40.000    | 4000             | 401010      | 070-0              | 1757              | ****    | 0.0111       |
|            | 114                                     |         | 17077      | 2.0111        | 0.0401       | 0000            | 0.010     | (0)0.0           | 00000       | 0.0101             | 8.0113            | 0.0400  | 0.010.0      |
|            | ~ ~                                     | 0.010   | 0.000      | 0.00          | 00000        | 0.000           | 0.0103    | (1)4.            | 6010.0      | 0.0101             | 0.0101            | 0.010   | 0.0100       |
|            | . f w l                                 | 101770  | 1017-7     | 0.0101        | 4010-        | -0-0101         | - 1010-0  | 11177            | 1010.0.     | 1010.0 -           | 1212.0            | 20110   | 1017-0       |
|            | 111                                     | 0.0100  | 0.010      | 0.0103        | 0-0101       | 0.000           | 7010.0    | . 6119           | 0.0100      | 6010.0             | 2000              | 0.010   | 2000         |
|            | F U 38                                  | 0.0101  | 6.0123     | 0.010         | c.ctc)       | 0.0409          | 0.010     | 1.0.1            | 0.00        | 0.000              | C. C. C. C.       | 1010.0  | 1010         |
|            | 1203                                    | 0-1101  | - 0-0101-  | 0-6144        | *****        | 0.0401          | - 0-000   | 1.5(4)           | 0.0101      | -1010-0            | 0.000             | 1010-0  | 1010-0       |
|            | +53                                     | 7.5(1)  | 6.0103     | .5111         | 0.000        | 0.000           | 0.00      | 1111             | 0.00        | 0000               |                   |         |              |
|            | 010+                                    | 1.00.   | 0.0100     | 0.000         | 6.0101       | 00000           | (2)2.2    | 2.5111           | 6010.0      | 00000              | 1010.0            |         |              |
| :          | 111                                     | 1010-0  | totaen -   | 2-6411        | -0-0101      | 4-111-7         |           | 1116             |             | 1010.0             |                   |         |              |
|            | 121                                     | 0.010   | 0.010      | 0.000         | 0.00         | 0.00            | 0.000     | . 5610           |             |                    |                   |         |              |
|            | 57.                                     | 1.5121  | 30.0       | 03.0          |              |                 | (1)0.7    |                  |             |                    |                   | 0.010   | 01010        |
|            |                                         | 1010    | 100000     |               | 100          | 0.010           | 0.010     | 0,00             | 0.00        | 0.000              | 2000              | 0.010   | 00000        |
|            |                                         | 0000    | 00000      | 11)6.         | 0000         | 0.000           | 0.000     | 0.0100           | 0.000       | 0.000              | 0.010             | 0.000   | 6.010.3      |
|            | 4                                       | 2,0611  | 4010-0     | 4114          | 40124        | .U. 0101.       | - 10101 T | 0.0100           | 1010.0      | 0.4101             | ים•חנהו           | מים נחו | 0.0101       |
|            | F 5.2                                   | 3.0611  | 00000      | 0.0101        | 0077.7       | 0.010           | 0.0101    | 0.000            | 1010.0      | 0.0101             | 0.010             | 0.0101  | 2000         |
|            | F1.7                                    | .5411   | 0.0101     | 0.0(0)        | 0.000        | 0.0(0)          | 0.0101    | 0.0(0)           | 0.000       | 0.000              | 0.0101            | 0.0(0)  | 2000         |
|            | 410                                     | 1110-1  | 0-0101     | 0-0101        | 0.0101       | 4010-0          | -0.4441-  | 1010-0-          | 0.0101      | 0.000              |                   | 0.0101  | 0.4601       |
|            | FRI                                     | 4.011)  | 0.010      | 0-00          | 0010.0       | 0.010           | 0.000     | 0.0101           | 6.010.0     | 0.000              | 0.0100            | 0000    | 1017         |
|            | t t. 18                                 | 6.011   | 0.016      | 0.010)        | 0.010)       | 1010.0          | 1010.0    | 600000           | 60000       | 6.0101             | 10100             | 0.00    | 60100        |
| •          | 244 224 2 4 2 2 2 2 2 2 3 2             |         | ****       | £9.6.2.9.2.   | 1111111      | 111111          | *****     |                  | ****        | 9.9444 <u>99</u> 4 | ****              |         |              |
| 1          | +117                                    | 0.0101  | 2.0111     | 5.0111        | 0.0101       | 6.112)          | (0)0.0    | 10.5111          | 1710.       | 0.0100             | 0.0100            | 0.010)  | 6.011        |
|            | 5.6.1                                   | 0.000   | 1010-0     | 2.0111        | 0.0101       | 3.0111          | 4,3611    | 1010-0           | 3.4111      | 0-0101             | 7-0111            | 0-0101  | 19970        |
|            | FLIN                                    | 0.0103  | 6010.0     | 0.0103        | 0.0101       | 0.010           | 0.0(0)    | 0.010            | 0.010       | 0.0111             | 0.010             | 0.00    | 23200        |
|            | FL10                                    | 0.010   | 0.0103     | 0.010         | 0.000        | 0.010           | 0.0(0)    | 0,0101           | 6.0(1)      | 0000               | 0.0               | 0.00    |              |
|            | 757                                     | 0.ut01. | 0.0101     | 0.0101        | 1010-0       | TOTO TO         | ٦         | 1010-0           |             | 0.010              |                   | מים מים |              |
|            | £ 54                                    | 0.0101  | 0.0601     | 0.0101        | 0.0101       | 0.0100          |           | 0.0100           | . 3(1)      | 0.000              | 0000              | 0.00    |              |
|            | AL.1                                    | 0.0(0)  | 0.0101     | 0.010         | 0.000        | 0.000           |           | .5(1)            | 0.00        | 0.000              |                   |         |              |
|            | 1153                                    | 1010-0  | 1010-0     | 1010-0        | 1010-0       | 1010.0          | 4         | 111              |             | מיחומה.            | - Course          |         | 101110       |
|            | F01                                     | 0.0101  | 3.0(1)     | 0.0101        | 0.0100       | 0.000           |           | . 2011           | 0.000       |                    |                   |         |              |
|            | ב<br>י                                  | 0.000   | 0.00       | 0.00          | 0.000        | 0.00            |           |                  |             |                    |                   |         |              |
| ;          | £ 51                                    | מוחים   | 1010       | 1010          | 1010         |                 |           | 1000             |             | 0.6101             | 1010-0            | 0.040   | 60000        |
|            | ALO:                                    |         |            |               |              |                 |           |                  | 00000       | 0.0400             | 0000              | 1010.0  | 00000        |
|            | ,,,,,                                   |         |            |               |              |                 |           | ***              | ******      | ******             | ******            |         | ********     |
|            | *****                                   | •       |            |               | ***          |                 |           |                  |             |                    |                   | 1177    | 410 411 - 40 |
| <b>910</b> | £ S I N                                 | 0.0101  | 0.010      | 0.600         | 2000         | 10)7.0          | 2000      | 2000             | 0000        | 101000             |                   |         |              |
|            | 101                                     | 1010-0  | 4111       | ##            | 4000-0       | 101010          | 1116-6    | 0.000            | 0.00        | 1010               | 1010-0            |         |              |
|            | 121                                     | 0.000   | 0.06       | 0.0101        | 0000         | 0.0(0)          | 3.0619    | 0.00             | 0000        | 0.000              |                   |         |              |
|            |                                         | 0.0101  | 0.00       | 1116.         | 0,000        | 0.000           | 3.011     | 0101             |             | 0.000              |                   |         |              |
| 1          | - fula                                  | 0-010   | 1117-7     | 2-0121        | -4-4411      | 1110-5          | מייים     | 1010             | מיחים       | 1010-0             | ****              |         |              |
|            | + x 1                                   | 0.000   | 0.00       | .5111         |              |                 | C. C. C.  | 0.000            | 0000        | 010.0              |                   |         |              |
|            | 151                                     | 0.000   | C - C (C ) | .5(1)         | 2000         | 0.000           | 0 · · ·   | 0.00             |             |                    |                   |         |              |
|            | 1701                                    | 0.0103  | 1115-1     | 0.0103        | 0.010        | 010-0           | 0.010     | 0.000            | 0.0101      | 1010.0             |                   |         |              |
|            | • • • • • • • • • • • • • • • • • • • • | ••••••• |            | • • • • • • • | • • • • • •  | • • • • • • • • |           | )<br>)<br>)<br>• | )           | ·                  |                   | •       | •            |

| FF # > . | ASSIGNE C<br>LUCALIUM | 1007-44 | 11-1465 | .F-1040. | ##*****    | HE - 1031  | 455 1 CMAL | #1 11# >    | or SHIP<br>Frences | NUMBER<br>11-10%                                         | 1807-44<br>66-1081 | 7407-44  | 6897-44  |
|----------|-----------------------|---------|---------|----------|------------|------------|------------|-------------|--------------------|----------------------------------------------------------|--------------------|----------|----------|
|          |                       |         | •       |          | •          | •          |            | •           | •                  | 3                                                        |                    | •        |          |
| Z<br>L   | 3704                  |         |         | 00000    | 0000       |            |            | 2.0111      |                    | 1110.21                                                  |                    |          |          |
|          |                       |         |         |          |            | •          |            |             | , ,                |                                                          |                    | , .      | *****    |
|          |                       |         |         |          |            |            |            |             |                    |                                                          | •                  |          |          |
|          | ) T                   | 0.010   |         | 0.00     |            | 10,000     |            |             | 0.00               | to to to to                                              | 0.010              | •        | 101777   |
|          | L H T                 | 0.000   | 0.000   | 0.000    | 0.0101     | 0.000      | 0.000      | 00000       | 1010.0             | .,                                                       | 0.010.0            | .311     | _        |
|          | f A 2                 | 0.0191  | 0.0101  | 0.0101   | 0.010.0    | 0.0101     | 0.010      | 0.0101      | 0.010.0            | 0.0101                                                   | 1.0611             | 0.0101   | 0.010.0  |
|          | £113B                 | 2-0111  | 0.0101  | 2-0111   | 131n-n     | •          | 3-0111     | 4           | 0.0101             | -4.0111                                                  |                    | ****     | 0.010    |
|          | 9                     | 0.000   | 0.0101  | 1115.    | 1.0611     | 0.0101     | 1010.0     | 1.4(2)      | 60000              | 0.0101                                                   | 0.00               | 0.010    | 2000     |
|          | ۲n3                   | 0000    | 11117   | 0.00     | 0000       | 1010.0     | 1010.0     | •           | 1010.0             | 1010.0                                                   | 0100               | 00000    | 20100    |
| i<br>:   |                       | 0.010   | 71117   | -0.010.0 | u-0101     | 10,0,0     | 0.0101     | 17,4(5)     | 1010-0             | 1010-0                                                   | י מימומו           | 0.010    | 1017.7   |
|          | F                     | 2.0111  | 0.0     | 0000     | 00000      | 0000       | 7.0(1)     | (7)5.       | 00000              | 00000                                                    | 0000               | 0000     |          |
|          |                       |         |         | 1.5(1)   | 1010       | 2.012)     | 11997      | 1.2631      |                    |                                                          |                    |          | 1000     |
|          | 200                   | 10000   | 100     | 1010-0   | - 40 00 00 | - De Ding- | 10000      | - It in a   | 10000              | 1010                                                     |                    | 701000   |          |
|          | 604                   |         |         |          |            |            |            | 1110.7      |                    |                                                          |                    |          |          |
|          |                       |         |         |          |            |            | 171077     |             |                    |                                                          |                    |          |          |
|          | 2 1 2                 |         | 201010  | 1010     | 1010       | 0.010      | 0.11.0     | 1-0111      |                    |                                                          |                    | 1010-0   |          |
|          | 1                     | 0000    | 0.1601  | 0.000    |            | 0.000      | 1.5(1)     | 1.0611      | 7017-5             | 00000                                                    | 0 0 0 0            | 0-10     | 0 7 7 0  |
|          | F1.6                  | 0.0101  | 0.0101  | 0.0101   | 0.0101     | 0.0101     | 0.000      | 11111       | 0-4404             | 4010-0                                                   | 0-0101             | 0-0107   | 7        |
|          | 6110                  | 0.0101  | 0.000   | 1.0111   | 0.0100     | 0.0100     | 0.0101     | 1.0(1)      | 0.000              | 0.0101                                                   | 0.0100             | 00000    | 0.000    |
|          | F51                   | 0.0101  | 00000   | 3.0121   | 6.0103     | 0.0100     | 1.5111     | 1710.       | 0.0100             | 0.000                                                    | 0.000              | 0.0100   | 1010.0   |
| !        | 77.1                  | 0.0101  | 0.0101  | .0.4101  | 401440     | 4.2111     | U. 1101    |             | 10101              | 0.0101                                                   | U.uful             | D.utul.  |          |
|          | FU10                  | 0.000   | 1.0411  | 0.000    | 0.0101     | 0.010      | 0.0101     | 7.0411      | 0.0100             | 0.010                                                    | 0.0101             | 0.00     | 0.0103   |
|          | FLT                   | 0.000   | 4.0(1)  | 3.0(2)   | 1.5(1)     | 6.2101     | 1.0121     | 4.0(2)      | 6.0101             | 0.000                                                    | 0000               | 0.010    | 10177    |
|          | FuT                   | LOTALO  | 2001    | नगरर     | 11111      | -17)5-4    | 179897     | 0.0101      | 1010-0             | 0.0101                                                   | -00100             | Dated 01 |          |
|          | F 5 T                 | 0000    | 1010    | 7.0121   | 1.3610     | 110.4      | 1.8121     | 0000        | 0000               | 0.0100                                                   | 00000              | 0.0409   | 2000     |
|          | 11.38                 | 0.00    | 0000    | 1.541)   |            | 110-7      |            | 0000        | 0.000              | 0000                                                     | 000                |          |          |
| •        |                       | 362611  | 10.000  |          | 101000     | 22222      |            |             | .000000            |                                                          |                    |          |          |
| 613      | FLIN                  | 0.000   | 0.010   | 0.000    | 0.00       | 6.0(2)     | (6)(3)     | 10.01       | 6.0111             | 5.5(2)                                                   | 1.11.7             | 0.000    | 8.0111   |
|          | FUIN                  | 0.000   | 4777-8  | 0.010    | 1775       | 0.0104     | 3-8421     | 17-016      | -1111-4            | 4-4134                                                   | -1-8444            | 5-0124   | 1110-71  |
|          | FUCH                  | 0.0101  | 4.3121  | 0.0103   | 01010      | 0.0101     | C. C. C.   | 0.000       | 0.0101             | 0.000                                                    | .3121              | 4.1(4)   | (0),.0   |
|          | LK.                   | 0.00    | 0.00    | 0.0101   | 0.000      | 6.010      | 1010°      | 0.00        | 0.000              | 0.00                                                     | 10101              | 2.3(4)   | 20000    |
| :        | 1 2 4                 | 1010-0  | 4111    | 42147    | - 0-1101   | 0.010      |            | 1010-0      | 1719-7             | -1417-6:                                                 | 10100              | 1019-1   | 1017-0   |
|          | - K 2                 |         |         |          |            |            |            |             |                    |                                                          |                    | 1001     |          |
|          | £ 11.5                |         |         |          |            | 1010       | 101010     | 00000       |                    |                                                          |                    | 4410     | 101000   |
|          | 101                   | 0.010   | 1.5111  |          | 0.000      | 0,000      | 0.000      | (0)0.0      | 17)5.              | 000                                                      | 0.00               | 110.4    | 0.010    |
|          | 1010                  | 0.0100  | 0.010   | 0.0101   | 0.010      | 0.0101     | 0.0100     | 0.0100      | 0.010              | 0.0101                                                   | 4.1141             | 0.0400   | 1010.0   |
|          | FUK                   | 0.0101  | 0.0101  | •        | 0-0101-    | 0.0101     | tuluen.    | 4.0101      | 171171             | 0.0101                                                   | 1717               | 0.0101   | 0.101    |
|          | F 5.1                 | 0.0(0)  | _       | •        | 3.061)     | 0.0101     | 0.0401     | 0.000       | 0.0(0)             | 0.000                                                    | 37656              | 0.010.0  | 0.0101   |
|          | 9 :                   | 0000    | э,      | 0.000    | 00000      | 2010       | 0000       | 010         | <u>ج</u> ٔ         | 6.048                                                    | 1764               | 0.010    | 37.0     |
| :        |                       | 1010-0  | ;       | •        | 0.0101     | 3 :        | 1715-1     | 7. n. 1.    | ٦ :                | 0.000                                                    | 1210.7             | •        |          |
|          | 27.4                  |         |         | 101010   |            |            |            |             |                    |                                                          |                    |          |          |
|          |                       | 00110   |         | 0.016    | 10101      | 3          | 103601     | 1014-0      | 1-0611             | 00100                                                    | 40100              | 0.000    | 10101    |
|          | +036                  | 0.000   | 3       | 0.000    | 0.000      | 3          | 00000      | 6.0(1)      | 0.000              | 00000                                                    | 00000              | 0.000    | 101000   |
|          | <b>+</b> C1           | 0.0101  | 2       | 0.0101   | 0.0409     | 4.0011     | 1.1121     | 0.000       | 0.0101             | 1010.0                                                   | 0.0100             | •        | 1017.7   |
|          | Lus                   | 0.010   | 0.1101  | 0.6161   | U. 0101.   | . 0.6103   | 7.0111     | U. v. C. D. | 3                  | 0.000                                                    | 6.0103             | 6.010.0  | 0.010.0  |
|          | 110                   | 0.0101  | 0.010   | 3.0(1)   | 0.010      | 0.0103     | 4.3661     | 0.0101      | 0.000              | 0.000                                                    | 00000              | 0.016    | (0)))°   |
|          | 113                   | 0.000   | 101010  | ٠        | 0.0101     |            | 1.5140     | 0.0101      | 7                  | 1010.0                                                   | 0.0100             | •        | 2000     |
|          | , o -                 | 0.1101  | 11171   | 4-11-0   | 101000     | 2          | 101000     | 1.11.       | 5                  | 77.                                                      | 2000               | _        |          |
|          | 7                     |         | 1111    | 10000    | 01110      | 6010.0     | •          | (C) (C) (C) | 0000               | • •                                                      |                    |          |          |
|          | 123                   | 0.010   | 1110    | 0.1.10   | 1011       | 6.0101     | 600000     | 0.1101      | 1010.0             | 00000                                                    | 10100              | 0000     |          |
|          | *********             |         |         |          |            | )          | ***        | <b>***</b>  |                    | <i>&gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt;</i> | <b>.</b>           | ,<br>,   | , ·<br>• |

| Pths. | ASS IGNE U                             |                                         |               |             |                        | AF AN       | ASSIGNAL NI | NT TIMES  | by Sall         | NUTBER                                       | (hks)         |          |               |
|-------|----------------------------------------|-----------------------------------------|---------------|-------------|------------------------|-------------|-------------|-----------|-----------------|----------------------------------------------|---------------|----------|---------------|
| LKADE | אחוז נשטחדייי                          | FE-1083                                 | ++-1002       | FE-1024     | FE-1024 - FE-1090 - FE | 1501-44     | /K07=44     |           | 11-1005         | 7607-44                                      | TR07-44       | 1507-44  | 11-1675       |
| JHC   | ŁKT                                    | 0.010                                   | 0.0100        | 0.0101      | 0.000                  | 0.0101      | 0.010       | 0.000     | 0.0(01          | 0.000                                        | 1010.0        | 5.0111   | 60100         |
|       | THE                                    | 1010-0                                  | - U. LIUL     | 0.000       | 0.000                  | . 0010°     | 0.0101      |           | 0.010.0         | 1010-0                                       | - 0.0101      | 2.5(1)   | 0.0100        |
|       | AKI                                    | 0.010                                   | 0.0100        | 0.0(0)      | 0.0101                 | 0.0109      | 0.000       | 0.000     | 0.010.0         | 0.000                                        | 0.000         | 4.5(1)   | 0.000         |
|       | ) XX                                   | 0.00                                    | 0.0109        | 0.110       | 0.0401                 | 0.000       | 1010.0      | 0.000     | 0.000           | 0.000                                        | 0.000         | 7.0111   | 0.010.0       |
|       | 2014                                   | - 0-4101                                | .U. u.tu.     | 1010-0      | 0-4101.                | .01010      | 4010-0      | 1010-0    | 3.0111          | 0.0101                                       | .6.0101       | U-0101   | 0-0101        |
|       | 25                                     | 0.0101                                  | 0.0101        | 0.000       | 0.00                   | 0.000       | 0.000       | 0.00      | 11.5(1)         | 0.0101                                       | 0.000         | 0.0100   | 1010.0        |
|       | £ 51W                                  | 0.000                                   | 0.0100        | 0.000       | 0.000                  | 10.01       | 1.5(1)      | 0.000     | 7.0(1)          | 0.0400                                       | 6010.0        | 0.0101   | 1010.0        |
|       | AUA                                    | 00110                                   | 0.0101        | 0.401       | 0.0101                 | 1010-0      | -1115       |           | 0.0101          | 0.0101                                       | 1010-0        | 0.6601   | 101000        |
|       | YO.                                    | 0.0101                                  | 0.00          | 0.0101      | 0.0100                 | 0.0103      | 11,5(1)     | 0.0103    | 0.000           | 0.000                                        | 0.0101        | 0.0100   | 0.0100        |
|       | ALT                                    | 0.010                                   | 0.010.        | 0.010)      | 0.000                  | 0.0101      | •           | 0.010.0   | 0.0101          | 0.0101                                       | 0.0100        | 0.0109   | 1010.0        |
| :-    | 7                                      | - 0-1(0)                                | Lautil        | 0.c C C D L | Hentus                 | יחיסיחי     | 0.010       | . 0.0101  | 0.010.0         | 0.6101                                       | 1010.0        | 1010-0   | 0-1101        |
|       | ••••••                                 | • • • • • • • • • • • • • • • • • • • • | • • • • • • • |             | •••••                  | •••••       |             | ••••••    | •••••           |                                              | • • • • • • • |          |               |
| -     | 111                                    | 0.410)                                  | 0. 101        | 0.00        | 0. (0)                 | 0.0(0)      | 6.0101      | 0.010)    | 6.0111          | 0.4(0)                                       | 0.4(0)        | 1017.0   | 00 0          |
|       | FULL                                   | 1010-0                                  | 0-0101        | 1010-0      | 0.0101                 | 4.014       | 0.0401      | 0.0101    | 4110-4          | 0.0101                                       | 1010.0        | 0.0401   | 1010-0        |
|       | ••••••••••••                           | •••••••                                 | ••••••        | ******      | ******                 |             | ••••••      | ••••••    | •••••           | ••••••                                       | •••••••       | •••••    | •••••••       |
| BTFK  | FRT                                    | 0.0103                                  | 0.0(61        | 0.0101      | 0.0101                 | 0.0103      | 1010.0      | 5.0(11    | 0.0101          | 0.000                                        | 0.0100        | 4.0(1)   | 6010.0        |
|       | £A!                                    | 0.0101                                  | 0.4401        | 0.0101      | 0.0101                 | 1010-0      | 1010-0      | 0.6101-   | 0-0101          | 0.0100                                       | 1010-0-       | 2.5411   | 4.01601       |
|       | FUIR                                   | 0.000                                   | 0.0101        | 0.010       | 0.0(0)                 | 0.0101      | 0.000       | 4.0(3)    | 0.00.0          | 0.0101                                       | 0.0101        | 0.000    | 00000         |
|       | FU2N                                   | 0.0101                                  | 0.010.0       | 0.0101      | 0.000                  | 0.000       | 0.0100      | 4.5(2)    | 0.000           | 0.000                                        | 0.0100        | 0.000    | 0.0101        |
|       | - Int                                  | -0.010.0-                               | 1011-0-       | - 0-0101    | 0-4101                 | חיחוחו-     | O.utul.     | - 3-U(11) | 0.0101          | -0.0(01.                                     | .0.000.       | D. U. U. | 0-1101        |
|       | £11                                    | 0.000                                   | 0.0101        | 0.0101      | 0000                   | 0.0101      | 0.0101      | 3.0(1)    | 0.000           | 00000                                        | 0.000         | 0.0101   | 0.00          |
|       | f ST                                   | 0.00                                    | 0.010         | 0.000       | 0.010                  | 0.0101      | 0.010       | 2.0(1)    | 0.000           | c.c.to)                                      | 0.000         | 0.000    | 0.460         |
|       | 6116                                   | 0.0101                                  | - 0-0101      | 0-0101      | 0-0101                 | 0-0101      | 1010-0      | -8(1)     | 0.0101          | 0.0101                                       | 0,000         | 0.0101   | 0000          |
|       | <b>101</b>                             | 0.010                                   | 6.010         | 0.000       | 070.0                  | 0.0101      | 0.0(0)      | 11)9.     | 10170           | 0.010                                        | 0000          | 0000     | 1017.0        |
|       | FC8                                    | 0.0103                                  | 0.010         | 0.000       | 0.0101                 | 0.000       | 0.000       | 1116.     | 0.0101          | 0.0(0)                                       | 0.000         | 0.000    | 0.0101        |
|       | 770752003                              |                                         |               |             |                        |             |             | ***       | * * * * * * * * |                                              |               |          | ******        |
| bTFA  | FRT                                    | 4.5(2)                                  | 0.000         | 9.5(2)      | 0.000                  | 8.2131      | 0.0101      | 0.010     | 0.010           | 0.0(0)                                       | 0.000         | 0.000    | 17.0171       |
|       | F # 3                                  | 0-0101                                  | 0.0101        | 0.0101      | 0-0101                 | 0.0101      | 0.010       | - 0-0101  | 0.0101          | 0.0101                                       | - 0-6101      | 3-0413   | 2017-3        |
|       | N204                                   | 3.8123                                  | 9.01          | 0.000       | 3.011)                 | £.0(0)      | 0.0         | 0.000     | 0000            | 0.00                                         | 0.00          | . >110   | 20000         |
|       |                                        | 0000                                    | 3.0121        | 0000        | 1101                   |             | 0000        | 0.000     | 6.011           | C- | 2010          | 10100    | 1017.0        |
| i     |                                        |                                         |               | - 10101     | - 11111                | 1010-0      | 1111        | 1010-0    | מיחים           | 10100                                        | 0-0101        | 0.000    | 1010.         |
|       | ֓֞֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |                                         |               |             |                        | 0.000       |             | 1010.0    | 1010.0          | 0.000                                        | 50000         | 0.00     | 0000          |
|       |                                        | 111007                                  |               |             |                        |             | 110.7       |           |                 |                                              |               |          |               |
|       | 2114                                   |                                         |               |             |                        |             | ****        |           |                 | 10100                                        |               | 1010-0   |               |
|       |                                        |                                         |               | 0.000       | 1105.1                 | 6.316.3     |             |           | 0.0100          | 0000                                         | 1010.0        | 0.00     | 10000         |
|       |                                        | 1010.0                                  |               | 0.010       | 1719-7                 | 0000        | 0000        | 0000      | 2010.0          | 1010-0                                       | 20.0          | 6010.0   | 20.0          |
| •     | 1                                      | 1010.0                                  | 2010.0        | 1010-0      | 1110-1                 | 0.010       | 0.010       | 0.010     | 0 n n           | 1017-0                                       | 000           | 0.000    | 27777         |
|       | 1.0                                    | 0.000                                   | 010           | 00000       | 11501                  | 0.00        | 00000       | 0000      | 0000            | 070.0                                        | 0.00          | 0.00     | 2000          |
|       | 102                                    | 0.00                                    | 0.0           | 0.00        | (1);-7                 | 0.00        | 0.0101      | 0000      | 0.00            | 0.0400                                       | 010           | 0.00     | 20.0          |
|       | 153                                    | 0000                                    | 0.010         | 0.0161      | 3.0(11                 | 0.0101      | מי הל הו    | 0.010     | 1010.0          | 10100                                        | 0.000         | 0.010    | 21000         |
|       | 1.                                     | 1.001                                   | 0.0           | 0.010)      | 5.5111                 | 0.0101      | C. C. C.    | 0.000     | 0.010           | 0.0(0)                                       | 0.00          | 0.000    | C             |
|       | ٦<br>2                                 | 7.011                                   | 0.0           | 6.000       | 00000                  | 1010.0      | (0)0.0      | 10)0.0    | 0.0101          | 00000                                        | 010.0         | (0)0.0   | 10100         |
|       | ***                                    | * • • • • • • • • • • • • • • • • • • • |               |             | ••••                   | • • • • • • | • • • • • • | •••••     | ••••            | ••••                                         | • • • • • • • | ••••     | • • • • • • • |

| FERS. | ASSIGNED                                     |          |                                         |           |             | AL AR        | ASS I GNA: | INT TIMES | DY SHIP | NUMBER      | (TES)        |             |                                          |
|-------|----------------------------------------------|----------|-----------------------------------------|-----------|-------------|--------------|------------|-----------|---------|-------------|--------------|-------------|------------------------------------------|
| LKADE | LUCALIUM.                                    | FE-1043  | ++++                                    | FF-1084   | 0607-11     | TAOT=44      | 1501-44    | FF-1044   | FF-1045 | 7607-34     | 1901-44      | 16-1647     | 11-11/3                                  |
| 2     | 104                                          | 1010     | 0.0401                                  | 101:10    | 101010      | 107070       | 0.0601     | 0.0401    | 07070   | 0.0401      | 11001        | (2)         | 44104                                    |
|       |                                              |          | ٠.                                      |           |             |              |            | ) :       |         | . :         |              |             |                                          |
|       | !                                            | 1010     | -1011                                   | •         | š           | 101010       |            |           |         |             | ****         | ***         |                                          |
|       | 417                                          | 0000     | 110.4                                   | 0.00      | 4.012       | 0.00         | 0.0        | 2.6111    | 0000    | 0           | 4.011        | _           | 3                                        |
|       | 405                                          | 0.0100   | 0.010                                   | 0.000     | 0.000       | 0.000        | 0.0101     | 1.011     | 0.00    | 0.000       | .5(1)        | 0.010       | () () () () () () () () () () () () () ( |
|       | AUA                                          | -1774-1- | - 101110                                | 0-0101    | 0.000       | 1010-0-      | 1010-0     | 1110-1-   | 0.010   | 1010.0      | 1715         | 0.6601      | 10)000                                   |
|       | AL3                                          | 0.0100   | 0.0100                                  | 0.0101    | 0.0101      | 0.0000       | 0.0101     | 6.0109    | 0.0100  | 0.0101      | .5111        | 4010.0      | 1010.0                                   |
|       | 414                                          | 0.0100   | U                                       | 0.000     | 313.0       | 0.0101       | 0.0601     | 0.0(0)    | 0.0101  | 00000       | 11)4.        | •           | 0.0100                                   |
| 1     | . £52                                        | 0-0101   | • 3                                     | 11001     | 0-0101      | 1010-0       | 3          | 1010-0    | 00100   | 1010.0.     | 111000       | -           | 4010.7                                   |
|       | c e l m                                      | 1.0611   | 4.5661                                  | 0.0101    | 0.000       | 0.0(1)       | 0.0101     | 8.0(1)    | 0.0101  | 0.010       | 61000        | 600000      | 1017.0                                   |
|       | E S I W                                      | 1.0011   | •                                       | 0.0101    | 0.010       | 0.000        | 0.000      | 0.000     | 0.000   | 0.000       | 1.2(1)       | 0.010       | (3)0.0                                   |
| ;     | <b>*</b> * * * * * * * * * * * * * * * * * * | 0.0101   | 0000                                    | 7-0111    | 0-5101      | 0.44.01      | 4110.00    | 4010-0    | 0.4601  | 0.0101      | 1116-        | 0.0604      | 440.00                                   |
|       | 554                                          | 0,000    | 0.0103                                  | 0.0101    | 0.0100      | 0.000        | 0.010      | 0.0101    | 0.000   | 00000       | 1.0610       | 0.000       | 0.010                                    |
|       | 113                                          | 0.000    | 0.100                                   | 0.0101    | 0.0400      | 1010         | 0.010      | 0.010     | 0.000   | 0.0101      | 1.5(1)       | 00000       | 10)0.0                                   |
|       | - FL18                                       | 0.0101   | 0.0401.                                 | 40100     | 0.010       | - 01010-     | 10101      | 0.0101    | 0.0101  | 0.0101      | -5111        | 0.0101      | 0110                                     |
|       | LRI                                          | 0.0401   | 0.000                                   | 0.0103    | 0.0101      | 5.0411       | 0.000      | 00000     | 4.0(1)  | 0.000       | 6.0(4)       | 0.000       | 10100                                    |
|       | 4774                                         | 001010   | 0.000                                   | 0.0000    | 3 - 3 ( 2 ) | 000000       | 0.000      | 0.000     | 14.0(1) | 00000       | 0.000        | 00000       | 0000                                     |
| ;     | 141                                          | 0-1101   | 4014-0                                  | 0-6101    | den un      | 4000         | 4-0101     | 01010-0   | 0.0(11) | 4010-0      | 0.000        | 0.0100      | 0.010                                    |
|       | AU3                                          | 1.501    | 0.0101                                  | 1000      | 0.010       | 0.000        | 0.010      | 1.0011    | 0.010)  | 0.040       | 0.00         | 0.0100      | 1010.0                                   |
|       | Au F                                         | 0-0101   | 0-016.4                                 | 0.000     | 0,010       | 101010       | 11167      | 00000     | 6.0101  | 0.0101      | 1010-0       | 0.0101      | 62,00                                    |
|       | A 1                                          | 0.0401   | 0 0 0                                   | 0.0401    | 0-4401      | 0.0401       | 3.4611     | D-u dal   | 1010-0  | 0.0401      | 0-4101       | 40 Ju - 0   | 101978                                   |
|       | 406                                          | 0,000    | 0.0101                                  | 0.000     | 0.0101      | 17.0411      | 0.000      | 0.000     | 0.0101  | 0.0101      | 0.000        | 0.0400      | 0.000                                    |
|       | 416                                          | 0.0101   | •                                       | 0.0100    | •           | 0.0101       | 6010.0     | 0000      | 0.000   | 0.000       | 00000        | 0.0100      | 1317.7                                   |
| 1     | AUA                                          | 0.0101   | D. 0101                                 | D. titti. | 3.0111      | 0.0101       | 0. 0101    | 0-410)    | 0.0101  | 0-0101      | 0.0101       | 0.0101      | 0.0101                                   |
|       | £ U.28                                       | 0.0101   | 0-6161                                  | 0.0101    | 1.0411      | 0.0101       | 0.010      | 0.0100    | 0.0101  | 0.0101      | 0.000        | 0.000       | 0.0101                                   |
|       | FO                                           | 0-010    | 0,100                                   |           |             | 0.0401       | 0.010      | 00000     | 01010   | 00000       | 0.010        | 0.000       | 0.000                                    |
|       | F 141                                        | 0.6101   | 4.6111                                  | 0.000     | 0.000       | •            | 0.0604     | 0.040     | 0.0101  | 0.0101      | 0.0101       | 0-4401      | 0.010.0                                  |
|       | t L 26                                       | 1.0611   | 0.0100                                  |           | 0.000       | 0.0401       | 0.000      | 0.000     | 0.0101  | 0.010       | 0.000        | 3           | 0010.0                                   |
|       | *********                                    |          | *******                                 | •         |             |              | ********   |           | ••••••  |             |              | :           |                                          |
|       | •                                            | •        | •                                       |           |             |              |            | ;         |         |             |              |             |                                          |
|       | 5                                            | 0.000    | e- c c o                                | 0.000     | 00000       | 0.000        | 0.0100     | 0.000     | 0.000   | 0.000       | <b>c.c.c</b> | 8.04        | c. c (0)                                 |
|       | Auts                                         | 0-0101   | 4-6134                                  | 0.0101    | 4           | - e-0101-    | 0-0101     | -0-6103   | ž       | 1010.0      | 110-01-      | 0.010.0     | 1010.0                                   |
|       | £ 51#                                        | 4.0(1)   | 0.000                                   | 0.0       | ;           | 3.0111       | 7.0613     | 7.0611    | 0.000   |             | 0000         | 370.0       | c. c. c. c.                              |
|       |                                              | 11)4     | 010.0                                   | 0.010     | <b>.</b>    | 0.0(0)       | 00000      | . 3(3)    | 0.00    | 0.0109      | 10100        | 0000        | 2000                                     |
| !     |                                              |          |                                         | 1310-0    | •           | -0-4401      | n-cent     | 1716      | 1010    | 0.000       | 1010-0       | 1010-0      | 1010-0                                   |
|       |                                              |          |                                         |           | <b>.</b>    | 0000         |            | . 3110    | 0000    | 0.000       |              |             |                                          |
|       |                                              |          |                                         |           | •           | 1110-21      |            | 1010.0    |         | 1010.0      | 1010-0       |             |                                          |
|       | - 503                                        | 0.000    | 1110-0                                  | 0.0101    | 3           | 0.0101       |            | 1010.0    |         | 1010.0      | 1010.0       | 0.010       | 20.0                                     |
|       | # C 1                                        | 0000     | 10.01                                   | 0.000     |             | 0.00°        | 0. c. c.   | 0.00      | 0.0     | 0.0100      | 0000         | 0.0         | 2000                                     |
|       | <b>5</b> 0                                   | 0.00     | 1.5(1)                                  | 0.000     | 00000       | 60 C C C C C | 6. c. (c.) | (2)2.7    | (C) 0   | (°0.0.)     |              | 0.000       | 90,00                                    |
| i     | AUZ.                                         | 4-0111.  | 1116                                    | 0.010     | . 0.0101    | 1010-0       | 10101      | 0.0101    | 1010-0  | 0.0101      | 1010.0       | (,,,,,      | 1010.0                                   |
|       | t ><                                         | .561     | C - C   C - C - C - C - C - C - C - C - | 0.000     | 00000       | 0.0101       | 0.010      | 0.000     | 0.000   | 0.000       | 0.010        | 0.000       |                                          |
|       | £ 53                                         | .>(1)    | 00000                                   | 0.000     | 0.000       | 0.000        | 0.0103     | 0.010     | 00000   | 0.000       | 00000        | 1010.0      | 1010.0                                   |
|       | F U3b                                        | 111501   | 0.6141                                  | 1010-0-   | 0.101       | .0.000       | 0.0101     | 0.101     | 0.0101  | 0.0101      | 0.000        | 0.0101      | 0.0101                                   |
|       | AU3                                          | 3.011)   | 0.000                                   | 0.010     | C. 0101     | 6.0100       | 0.010      | 0.010     | 0.0103  | 0.000       | 0.0100       | 0.0100      | C. U.C.                                  |
|       | ALb                                          | 7.0111   | 0.0100                                  | 0.000     | 0.0101      | 0.0101       | (O) 0 . )  | (0) a · a | 1010.0  | 0.0601      | 0.000        | 0.0(0)      | 0.0401                                   |
|       | *********                                    |          |                                         |           |             |              |            |           | ••••••  | • • • • • • | ••••••       | • • • • • • |                                          |
|       |                                              |          |                                         |           |             |              |            |           |         |             |              |             |                                          |

| PINS. | ASSIGNED - FF=1083  | FF=1083    |             | FFELLER | \$4-0601-44 \$811030-44 | # + + + + + + + + + + + + + + + + + + + | ASSIGNALNI<br>EFFICAL FF | ASSIGNATED TIMES BY SHIP<br>EFFICIST FFFICOR FFFICORS |           | NUMBER<br>FF-1094 | (HKS)<br>FF-1081 | FF-1642 | ++-++13        |
|-------|---------------------|------------|-------------|---------|-------------------------|-----------------------------------------|--------------------------|-------------------------------------------------------|-----------|-------------------|------------------|---------|----------------|
| HH3   | AUA                 | 3.0413     | 0.000       | 0.0101  | 0.0101                  | 0.0101                                  | 0.0401                   | 1110.2                                                | 0.000     | 0.0101            | 60.000           | .5111   | 14.0111        |
|       | - FRI               | 0.0101     | -0-0101     | 0.0101  | 4010-0                  | 101000                                  | -0-0101-                 | G. L. 1 0 1.                                          | 101000    | Beut21            | 4-6121           | 1-1111  | 101000         |
|       | A U Z B             | 1.0(1)     | 0.000       | 1.011   | 0.0403                  | C. C. C.                                | 6.0000                   | 1.0(1)                                                | 6.7131    | 11.0(1)           | 0.000            | 1716.7  | <b>7070.</b> 0 |
|       | AULB                | 0.0101     | 3.0(2)      | 0.0103  | 4.0119                  | (010°0                                  | 0.0103                   | 4.0611                                                | 6010.0    | 7.0111            | 9.5111           | 2.2131  | 0000           |
| !     | AKI.                | - #• u(0)  | - 1010-0    | 3.2111  | 4010-4                  | 40,000                                  | - חיירות                 | - 0017-0 -                                            | 1010-0    | 4410.5.           | 1010-0 -         | 3.0111  | 0.0101         |
|       | LUIN                | 0.0101     | 6.5141      | 6.5121  | 0.0101                  | 0.0601                                  | 4.6611                   | 0.0100                                                | 6.0111    | 0.0100            | 4.0141           | 3.4113  | 1030.0         |
|       | ESIN                | 0.0        | 6.611)      | 1.0(3)  | 0.0101                  | 0.000                                   | 9.0111                   | 5.0(4)                                                | ***       | 4.7(3)            | 2.0131           | 3.0(1)  | (a) 7 . 0      |
|       | Lut                 | -1010-0    | 3-4114      | 12541   | 0.0404                  | 0.0101                                  | Lutual.                  | 1010-0                                                | 0.000     | 0. uto.           | 6-11/21          | 5-0111  | 1010-0         |
|       | t t. 16             | 0.010      | 00000       | 1.011   | 0.000                   | 0000                                    | 0.0101                   | 0.0(0)                                                | 0.000     | 1010.0            | 0.000            | 4.6111  | 0.0(0)         |
|       | <b>PC</b> 8         | 0.0101     | 0.010       | 0.0161  | 0.0101                  | 0.000                                   | 0.0101                   | 0.000                                                 | 0.000     | 0.0(0)            | 0.0101           | 11)6.   | 1011.0         |
|       | 114                 | - 0*u101   | .d.uttl     | 3.5111  | -Bandle                 | 0.000                                   | 7-0111                   | 2.5111                                                | . 0.0101  | -0.010            | 1017-0           | 1110-1- | 0.4401         |
|       | <b>V</b> 0 <b>V</b> | 1.011      | 1110.4      | 3.0(11  | 1010.0                  | 1010.0                                  | 0.0100                   | 0.000                                                 | 0.000     | 0.000             | 0.0101           | 111507  | 00000          |
|       | 403                 | 0.000      | 4.6111      | 0.0101  | 00000                   | 0.000                                   | 0.0100                   | 1010.0                                                | 0.0101    | 0.000             | 1.5111           | 0.010   | 0.010)         |
|       | 474                 | 0.0101     | 0.0101      | 10177   | 0.0401                  | 1010-0                                  | 0.4101                   | Beulli                                                | 1010-0    | 10.ut 11.         | . 0.4101         | 1010-0  | 4010-0         |
|       | AL                  | 0.010)     | 0.0103      | 0.0101  | 0.010                   | 0.000                                   | 6.0103                   | .0110                                                 | 0.010     | 11)4.             | 0.0101           | 0.010   | 1010.0         |
|       | AL 3                | 0.00       | <b>6000</b> | 0.0(0)  | 1010.0                  | 0.0103                                  | C-010.3                  | . 6113                                                | (0)0·0    | 1114              | 0.010            | 0.0100  | 0.000          |
| ;     | 444                 | 01010      | U. C1 01.   | 3.0611  | -070-0                  | 0.0101                                  |                          | 1110.                                                 | 1010.0    |                   | .0.0101          | 4017-7  | 10177          |
|       | 748                 | 0.00       | 0.000       | 0.0(0)  | 0.000                   | 0.0101                                  | 0.0100                   | 5.0(1)                                                | 0.000     | 0.000             | 0.010            | 0.000   | 00000          |
|       | 774                 | 0.010)     | 0.0100      | 0.010   | 0.060                   | 0.000                                   | 0.00                     | 1.0611                                                | 0.000     | 0.000             | 0.0101           | 1017.0  | 20000          |
|       | 77                  | 0.0101     | 0.4101      | 0.0101  | 0.0101                  | 1010-0                                  | Lulus.                   | 111111                                                | D.utol    | 0.0101            | 1010-0           | Thin o  | 4.0101         |
|       | X 3                 | 0.000      | 0.10        | 0.0101  | 0.000                   | 6.0101                                  | 1010.0                   | 11177.1                                               | 6.0101    | 0.000             | 0.000            | 0.0101  | 0.0103         |
|       | XX                  | 0.0103     | 0.0101      | 0.000   | 0.000                   | 0.000                                   | 0.0101                   | (T) R.                                                | 0.0(0)    | 0.0109            | 0.0101           | 0.060   | 00000          |
|       |                     | D. L. 101. | . Dautul .  | 0.0101  | 17777                   | 10101                                   | .4.5(11).                |                                                       | (0) 7 * 3 |                   | 0.0101           | 1010-0  | 0.0101         |
|       | £ 53                | 0.000      | 0.00        | 0.0101  | 00000                   | 0.0103                                  | 1.5141                   | 2.0(1)                                                | 0.00      | 0.000             | 0.000            | 0.000   | C. C. C. D.    |
|       | 117                 | 0.0(0)     | 0.000       | 0.0101  | 0.0101                  | 0.0101                                  | 0.010                    | 4. C(11)                                              | 0.000     | 1070.0            | 0.0103           | 6.010.0 | 0.0103         |
|       | 445                 | 1010-0     | -101010     | 1110-1  | 1010-11                 | 0.0101.                                 | .04040.                  | 7710-1                                                |           | 0.0101            | 1010-0           | 1010T   | 101777         |
|       | ALG                 | 0.0101     | 0.410       | 0.000   | 0.000                   | 0.000                                   | (0)0°0                   | 5.6111                                                | 0.000     | 0.000             | 0.0109           | 0.000   | 0.000          |
|       | AL5                 | 0.0101     | C. c. (c.)  | 1010-0  | 00000                   | 0.0100                                  | 0.010.0                  | .6(1)                                                 | 0.0103    | 0.0400            | 0.0101           | 0.010   | C. C. C.       |
|       | <b>801</b>          | 7010-0     | D. U101     | 0.0101  | 0.0101                  | D.Utul.                                 | - \$4214L                | 1010.0                                                | 0.401     | 0.010             | 0.0101           | 1010.0  | 0.0103         |
|       | £13                 | 0.0101     | 0.000       | 0.0101  | 001000                  | 0.000                                   | .011                     | 000000                                                | 0.000     | 0,000             | 0.000            | 0.0109  | 00000          |
|       | 115                 | 0.0101     | 0.100       | 0.010   | 0,000                   | 0.000                                   | 1110-7                   | 0.000                                                 | 0.000     | 0 · 0 0           | 0.010            | 0.010   | 0.0403         |
| !     | 4707                | TOUR       | 0.0101      | 1010-0  | 1010.0                  | 0.0101                                  | 11154                    | 0.0101                                                | (01073    | 0.0101            | D.0101           | 7010-0  |                |
|       | 51                  | 0.000      | 0.00        | 0.000   | 8.0(1)                  | 0.0(0)                                  | 0.0(0)                   | 0.000                                                 | 0.000     | 0.0101            | 0.0103           | 0.0100  | 0.000          |
|       | EST                 | 0.000      | 00000       | 7.0(1)  | 0.0101                  | 0.000                                   | 0.010.0                  | 0.0100                                                | 0.000     | 0.000             | 0.0100           | 0.0100  | 0000           |
| •     | 0000000000          | 44444      | ******      |         | *******                 | *******                                 | *******                  | ******                                                |           |                   | ******           | ******* |                |

| AND D. C.C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t KS.                                 | AS S 16N U | -FEBICKS  | 4.000               | 化多二苯甲基二苯甲基二苯甲基二苯甲基二苯甲基二苯甲基二苯甲基二苯甲基二苯甲基二苯甲基 |         | MEAN<br>EFF. 1041 | EFETON FF   | 11m2         | EF-1042  | NUMBER<br>FF-1092 | (MK > )<br># F = 1081 | FF-1031        | 44-1642     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|-----------|---------------------|--------------------------------------------|---------|-------------------|-------------|--------------|----------|-------------------|-----------------------|----------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            | 1         |                     | •<br>•                                     |         |                   |             |              |          | :                 | j                     |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # # # # # # # # # # # # # # # # # # # | D X I      | 0.0(0)    | 4.014               | 0.000                                      | 0.00    | 0.010             | 0.0100      | c. c. (c)    | 00000    | 6.0113            | 9.0(1)                | 3.1131         | 110001      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | AUA        | -0.401.   | - tottot-           | - 0-0101                                   | 40100   | 1010-0            | 4.0101      | . 4.0411     | 0.0101   | -0.0101-          | 0-0401                | 0-4101         | 110-01      |
| 0.01010 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.01011 0.0101 |                                       | EUla       | 0.00      | 0.000               | 0.0103                                     | 0.0400  | 12.0111           | 0.000       | 1010.0       | 1110.4   | 0.0(0)            | 5.5(11)               | 1010.0         | 6.0110      |
| 0.0100 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | AUlb       | 00000     | 10100               | 0.010                                      | 4.6121  | 0.010             | 0.000       | 6.0101       | 0.000    | 0.0101            | 1010.4                | 1710-1         | 6.0100      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | AUS        | Deutal.   | u.u.u.u.            | 1.5111                                     | -10100- | 4010-4            | - 40101-    | . 401044.    | 0.0101   | . 0.0(0)          | 0.0101.               | 1710-1         | tulued .    |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | 405        | 0.000     | 0.400               | 0.000                                      | 1010.0  | 0.010             | 60,000      | 0.100        | 5.0111   | C. C.C.           | 0.000                 | 3.0111         | (0)0°0      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | 2 2        | 0.0101    | 0.000               | 0.000                                      | 0.0100  | 0.000             | 0.010       | 0.010        | 1010.0   | 0.000             | 0.000                 | . 3(1)         | 0.100       |
| 0.0101 0.0101 15.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0 |                                       | 101        | 0-0101    | . U. L. L. L. L. L. | 0.0104                                     | 4.401   | 4010-0            | 1010.0      | . toto . d . | 0.0101   | 0.0101.           | Deutut.               | 4.5111         |             |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | 4 > 10     | 0.0103    | 0.010               | 1110-61                                    | 0.0103  | 0.0103            | 6.0103      | 3.012)       | 3.0611   | 2.1(2)            | 0.000                 | 9-0119         | 6010.0      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 1.0111 1.0111 7.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | E ST       | 0.000     | 0.4603              | 0.0101                                     | 00110   | 0.0101            | 0.010       | 1010.0       | 0.000    | 0.010             | 0.50                  | 3.0113         | 1011-0      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | -117       | . 101n au |                     | .0.010.                                    | 10000   | 1010-0            | 4. 4101     | . 0.0104     | 1010-0   | 0.0101            | 0.0100                | 3.0111         | 1017-0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | EKT        | 0.0101    | 0.460               | 0.0101                                     | 0.0101  | 0.0409            | 0.010       | 0.0101       | 3.0111   | 1.6(1)            | 7.0(3)                | 1010.0         | 1317.7      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | FLS        | 0.000     | 601000              | 0.0101                                     | 0000    | 0.010.0           | 0.0101      | 0.000        | 0.000    | 0.000             | 4.0611                | 0.0101         | 0.0101      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | FLIB       | 0.0101    | 1011-0              | 0.0101                                     | 40000   | 0.0101            | 0.4401      | 0.0101       | 1010-0   | 0.0104            | 1115                  | 0-010          | 0.0163      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 14.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0 |                                       | EUA        | 1.6121    | 0.0101              | 0.000                                      |         | 6.0600            | 6.0100      | 1119.        | 0.0101   | 0.0(0)            | 2.0641                | 17773          | 6010.0      |
| 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | £ 53       | 0.010)    | 0.0100              | 0.0103                                     | 0.010   | 1010.0            | 0.010       | 0.000        | 0.0101   | 0.000             | 1.041)                | 0.000          | U. C. C. D. |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | - Aut      | 0.0101    | 101010              | - 0.000                                    | 0.0101  | 1013-0            | 0.0101      | 4.0(11)      | 1017.0   | 13.01.11          | . 0.010.0             |                | 1017-7      |
| 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 .8111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0 |                                       | AU26       | 0.0101    | 1.6411              | 0.0101                                     | 2.0111  | 0.0101            | 0.0103      | 0.0101       | 1010.0   | 8.011             | 0.0(0)                | 0.010          | 9999        |
| 1.5111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | £ C P      | 0.0100    | 0.0101              | 0.0101                                     | 0.000   | 0.0101            | 0.0101      | 6118.        | 0.0101   | 0.0(0)            | 0.0603                | C. c. 101      | 0.0100      |
| 0.0101 0.0101 4.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | 4113       | 111541    | 1010-0              | 0.0404                                     | 0.0101  | 0-4001            | 1010-0      | -8111        | 0.010    | - 0-4101 -        | -10101-0              | -4010-0-       | 4.4601      |
| 0.0101 4.0121 4.5111 0.0101 0.0101 2.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | £ 54       | 0.010     | 0.0669              | 4.0111                                     | 6010.0  | 0.0101            | 0.000       | 8.0111       | 0.000    | 0.0103            | 0.0(0)                | <b>1010.</b> 0 | 0.0100      |
| 0.0101 0.0101 0.0101 0.0101 4.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | ALT        | 0.0101    | 4.0121              | 4.5(1)                                     | 0.000   | 0.0101            | 0.0101      | 7.0(11       | 0.0101   | 0.000             | 0.0101                | 0.0109         | 0.010       |
| 0.0101 U.C101 U. |                                       | W177       | Dautul.   | Lutu-d.             | .01010                                     | 1010ren | 4110-8            | יוחות ית    | . 1010.00    | - D.u.O. | usutal.           | 10100                 | 0010-0         | 1010-0      |
| 0.0101 0.0101 0.0101 2.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0. |                                       | r r 1      | 0.013.0   | 6.169               | 0.0101                                     | 0.0101  | 4.0111            | 0.010       | 0.000        | 0.010    | 0.0101            | 0.000                 | 10000          | # 3 7 7 B   |
| 0.0000 0.0000 1.0010 2.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | AL 7       | 0.0101    | 0.0101              | 0.000                                      | 2.0611  | 0.000             | 0.000       | 0.0101       | 0.000    | 0.0100            | 0.0100                | 60 c c c c c   | C. c.(O)    |
| 0.0401 0.0401 3.0111 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 113        | 4010-0    | 0.0101              | 11001                                      | 11007   | 1010-0            | 0.0101      | 0.0101       | 0.0101   | 0.0101            | 0-0101-               | -0.0101        | D.0101      |
| 0.0400 0.0100 1.0111 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 444        | 0.0101    | 0.010               | 3.0113                                     | 0.0101  | 0.0101            | 0.0101      | 0.000        | 0.0101   | 0.0101            | 01010                 | 0.0100         | 0.010       |
| 6 1.8421 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401  |                                       | £ \$ 2     | 0.000     | 0.0103              | 1.0611                                     | c. c101 | 0.0101            | 0.000       | 0.000        | 0.010    | 6.010             | 0.040                 | 0.610          | 273.3       |
| 8 1.84(2) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010) 0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                     | AUA        | 0.0101    | 11001               | 0.000                                      | 0.0101  | 0.0101            | 4.0144      | 0.0101       | 0.01u2   | 0.4401            | -10101-0              | 0.010          | יווות יווים |
| 1.341) 6.616) 6.616) 6.616) 6.616) 6.616) 6.616) 6.616) 6.616) 6.616)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | £ 0.26     | 1.8(2)    | 0.0663              | 0.0101                                     | 0.0101  | 0.00.0            | 0.000       | 0.0101       | 0.010    | 0.0101            | 0.000                 | 0.00           | 0.010)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | FE         | 1.3410    | 60000               | 0.0100                                     | 977.0   | 00000             | 6. c. c. c. | 0.000        | 0.010    | 0.0101            | 0.0100                | 0.0101         | 0.000       |

| PLKS.  | ASSIGNED                                |               |           |               |                                 | MEAN          | ESSIGNIAL NI  | NI LIMES  | ET SHIP                                                 | NUMBER                                 | (Hk)         |          |           |
|--------|-----------------------------------------|---------------|-----------|---------------|---------------------------------|---------------|---------------|-----------|---------------------------------------------------------|----------------------------------------|--------------|----------|-----------|
| PRANE  | tkade                                   | - FE= 1083    | te-1062   | be-1684       | PF-1065 FE-1684 EF-1098-EF-1091 |               | 1877-34       | FF-1044   | tt-1647 ft-1844 ff-1865 ff-1846.ff-1861.ff-1847 ft-1862 |                                        | FF-1001      | 1507-44  | 41-1072   |
| AMCS   | 4 5 14                                  | 0.0669        | 0.0100    | 0.010         | 0.0(0)                          | 0.0000        | 0.000         | 0.000     | 0.0101                                                  | 6.0611                                 | 0.000        | 0.010    | 10100     |
|        | 181                                     | 1010-0        |           | 4010.0        | 10.4644                         | . 40 to 101 . | . 1010-0 -    | 1010-0    | 10101                                                   | -1114-                                 | 10000        | 01010    | 40100     |
|        | ART                                     | 0.010         | 10)0.0    | 0.0101        | C. C. C.                        | 0.010         | (0)0.0        | 0.010)    | 0.000                                                   |                                        | 0.0100       | C. U. U. | 0.0669    |
|        | ••••••                                  |               | •••••     | • • • • • • • | •••••                           | • • • • • •   | • • • • • • • |           | ••••••                                                  | •                                      |              | •        | •••••     |
| £      | EUIN                                    | 0.0103        | 0.0101    |               | 0.000                           | 0.0100        | 1010.0        | 0.0101    | 6.0(11                                                  | 0.000                                  | 0.0101       | 0.0100   | 0000      |
|        | H-ma                                    | 0.0101        | 0.0101    | 1             | 0-0101 -0-0101 -0-0101          | 40101         | 0.0401        | 0.0101    | 4-0111                                                  | 0.0403                                 | 0-01030-0103 | 0.0103   | 0.0100    |
|        |                                         |               |           |               | ••••••                          |               |               |           |                                                         |                                        |              |          |           |
| AMER   | t UT                                    | 0.000         | 0.0101    | 0.010         | 00000                           | 0.010.0       | 6.0103        | 0.0101    | 0.000                                                   | 6.0111                                 | 0000         |          | 1010.0    |
|        | 184                                     | 1010-0        | 0-0101    | 1010-0        | -0-0101-0-0101                  | 1010-7        | 1010-0        | 1030-0    | 10,0.0 10,0.0                                           | ************************************** | 0.0101       | מ-חנמו   | 0.0101    |
|        | ************                            | • • • • • • • | •••••     | •             |                                 | •             |               |           |                                                         |                                        |              |          |           |
| 4 74 8 | *101                                    | 0.000         | 0.000     | 0.0101        | 0.0101                          | 0.0101        | 6.0111        | 0.0(0)    | 0.0101                                                  | 15.0411                                | 0.000        | 4.5643   | 270.8     |
|        | 141                                     | 0.0101        | 00000     | 0.0144        | 4-0104                          | 4.0104        | -6.0101       | 4010-1    | 1010-0-                                                 | -1010-0                                | -0010-0-     | 1510-4   | 1010-0    |
|        | ESIN                                    | 0.000         | ( ( c )   | 0.0101        | 0.0101                          | 0.010.0       | 4.0611        | 0.000     | 0.000                                                   | 5.0111                                 | 0.0101       | 0.0100   | 1017.0    |
|        | AUZB                                    | 3.0(1)        | 0.0100    | 0.0103        | 0.000                           | 0000          | 0.000         | 0.010)    | 8.0111                                                  | 0.0101                                 | 0.00         | 00000    | 0.000     |
|        | ALUA                                    | 0.0101        | 0-6101    | 2.0111        | 0.0101                          | . 4010.0      | 111000 -      | -0.013-0- | 1017-0                                                  | 0.0101                                 | 0.0101       | 0.0101   | U.0101    |
|        | AUG                                     | 0.6101        | 0.000     | 0.0101        | 0.100                           | 0.000         | 3.0(1)        | 0.000     | 0.000                                                   | 0.0101                                 | 0.0101       | 4010.0   |           |
|        | <b>9</b> 54                             | 0.00          | (3)3·3    | 0.000         | 00000                           | 0.010         | 7.011         | 0.000     | 60000                                                   | 0.00.0                                 | 0.000        | 60100    | (a) n · . |
|        | 153                                     | 0.0101        | 0.0101    | 0.0101        | 40104                           | 0.0101        | 1116-1        |           | 1010-0                                                  | -1017-0                                | 1010-0       | -0-0404. | 1011-1    |
|        | 117                                     | 0.0100        | 0.010)    | 0.0100        | 4.0613                          | U. U. U)      | 0.0101        | 0.010     | (0)0.0                                                  | 0.000                                  | 0.000        | 0.010    | 1010.0    |
|        | ALb                                     | 0.0101        | 0.0101    | 3.5(1)        | 0.000                           | 0.0100        | C. 01 C.      | 0.00      | 0.0100                                                  | 00000                                  | 0.0100       | 0000     | 6010.0    |
|        | Aut                                     | 10100         | U. tulul. | 11177         |                                 | 1010-0        |               | .0.0101   | 0.0101.                                                 | 0.0101                                 | 0.000        | 0.101    | 4.4.01    |
|        | AU3                                     | 0.0101        | 0.010     | 11.5111       | 0.0101                          | (010.0        | 0.010.0       | 0.0100    | 0.0100                                                  | 0.000                                  | 0.00         | 0.00     | 101010    |
|        | <b>V04</b>                              | 0.0101        | 0.000     | 1.5(1)        | 0.00                            | 0.000         | 0.0661        | 0.000     | 0.000                                                   | 0.0101                                 | 0.000        | 0.0100   | 0.0101    |
| 1      | 255555555555555555555555555555555555555 | *******       | ********  | ******        | *******                         |               | *****         | *******   | *******                                                 | *******                                | ******       | *****    |           |

| t N2   | LUCATION      | FF-1003       | £ 1403     | FE=1004  | 11040    | 16044                                   | 7507-41        | 1047 FF-1044 1 |          | 7697-44 | 1971-44  | 1501-14  | 11-1012      |
|--------|---------------|---------------|------------|----------|----------|-----------------------------------------|----------------|----------------|----------|---------|----------|----------|--------------|
| t NZ   |               |               |            |          |          |                                         |                |                |          |         | 9        |          |              |
|        | F.8.T         | 0.6601        | 0.146.4    |          | 0.0101   | 0.0464                                  | () - () ( ) () |                | 41.7.    |         |          | ******** |              |
|        | 6110          | 0.000         | - 10144-0  | 0-4401   | 0.401    | 101010                                  | 40101          | 0.4401         |          | 1010    |          |          |              |
|        | E S IN        | 0.0101        | 90000      | 0.0101   | 0.0101   | 0.000                                   | 0.0101         | 1115           | 0,0101   | 10100   | 0.000    |          |              |
|        | t X F         | 0.000         | 0.000      | 0.660    | 1013.3   | 0.000                                   |                | 4.004          | 0.000    | 0.0100  | 0.010    | 0.010    | 40           |
|        | TX4           | 0.6601        | . 4011-0.  | 0.4144   |          | - 4-4(0)                                | 40100          | +5(11          | 1010-0   | 01010   | 1010-0   | 10177    | 10177        |
|        | AKI           | 0000          | 1010.0     | 0.010    | 00000    | 0.0101                                  | 6010.0         | .5(1)          | 6.0103   | 0.010   | 0.000    | 60000    | 2000         |
|        | f1.7          | 0.000         | 0.016      | 0.0101   | 6010.0   | 0.000                                   | 1110.2         | 0.000          | 6.0101   | 0.0103  | 6.000    | 60000    | 2000         |
|        | ASK.          | 0-0101        |            | .2-0411  | -4010-0- | 0.0601                                  | - 40100-       | 0.010          | 6.010.0  | 6. uto1 |          | 0.4601   | 1017-7       |
|        | 11/1          | 0.000         | 0.110      | 1.5(1)   | 0.010    | 0.0101                                  | 0.010.0        | 0.000          | 6.010.0  | 0.0100  | 01010    | 0.10.0   |              |
|        | •••••••••••   | • • • • • • • | •••••      | *****    | •        | ••••••                                  |                | •••••          | ••••••   | ••••••  | ••••••   | ••••••   | ••••••       |
| 1      | 781           | 07070         | 0.1.401    | 0.0101   | 0,000    |                                         | 1010           |                | 1010     |         |          |          | 401          |
|        | 184           | 0.0401        | 0.010      | 01010    | 101777   | 40.04                                   | 0 10 10        | 101010         |          |         |          |          |              |
|        | ro1           | 0.010         | 0.110      | 0.000    | 0.0101   | 0.00                                    | 3.5111         | 0000           | 0.000    | 0.0     | 0,100    | 77770    |              |
|        | £ 5.T         | 6010.0        | 7.000      | 0.0100   | 0.0100   | 0.010.0                                 | 3.0110         | 0.010)         | 0.000    | 00000   | 1010.00  |          | 0.00         |
|        |               | 0+0101        | U. U. (U.) | 0-utus - | 0.000    | 0.0101                                  | 1110-5         | 0.0101         | . 4.0101 | 1910-0  | 1010**   | 6.0101   | 101777       |
|        | ••••••        | •••••••       |            | ******   | *****    | • • • • • • • • • • • • • • • • • • • • | ••••••         | • • • • • • •  | ******   | ******  | ••••••   | •••••    | ••••••       |
| 31     | #(D4          |               | 1010-0     | 0.0101   | 40.010   | 1010                                    | 0.0400         | 0.40           | 1070     | 1010    | 1010     | 1071     | 417.         |
|        | 481           | 0.0101        | 0.000      | 2-4633   | 0.010    | 0.000                                   | 0.00           | 1010           |          |         |          |          |              |
|        | ************* | •             |            |          | ******   |                                         |                |                |          |         |          |          |              |
|        |               |               |            |          |          |                                         |                |                |          |         |          |          | )<br>)<br>)  |
| r<br>E | TEN.          | 0.0101        | 0.000      | 1.0(1)   | 0.0100   | 0.0101                                  | 0.010          | 0.010          | 6.0103   | 0.000   | 0.010    | 0.016    | 0.010        |
|        | 143           | 1070          | - 0-0101-  |          | 1010-0   | 0.000                                   | 0.000          | 1017-0         | 0.0101   | -0-0101 | 0-0101   | 0-0101   | 10177        |
|        |               |               |            | 1110-7   |          |                                         |                |                |          |         | 999      | 1010.0   | 2000         |
| 1      | ****          | 3             | 0.000      |          |          |                                         |                |                |          |         | 0.000    | 0.000    |              |
|        |               | ŀ             |            |          |          |                                         |                |                |          |         |          |          |              |
| 5      | X             | 0.0100        | 0.0101     | 0.0101   | 0.010    | 0.010                                   | 0.0101         | 0.0100         | 4.0611   | 0.0101  | 0.00     | 0.000    | 70177        |
|        | FUIR          | 1010-0        | 1117       | 0.0101   | -0.0101  | 4010-0-                                 |                | 0.401          | 0.0101   | 0.0101  | - 0.010. | 0.1101   |              |
|        | t SIN         | 0.000         | 1.0(1)     | 0.000    | 1010.0   | 0.010                                   |                | 2000           | 1010.0   | 0000    | 0.00     | 2000     | 277.0        |
|        | 7 7           |               |            |          |          |                                         |                |                |          |         |          |          |              |
| :      | - 77          | 101110        | *****      | 1010-0   | - 101078 |                                         | 10 17 00       |                |          |         |          |          |              |
|        |               |               |            |          |          |                                         |                |                |          |         |          |          |              |
| Z<br>4 | 717           | 0.0101        | 2000       | 0000     | 1010.0   | 1010.0                                  | 1010.0         | 0.0100         | 0000     | 0000    | 0.000    | 1.5621   |              |
|        | 404           | 1070-0        | 0-0100     | 0.0103   | 20100    | 10000                                   |                | 10101          | 1010-0   |         |          | 1.012    |              |
|        |               |               |            |          |          |                                         |                |                |          |         |          | 1757     |              |
|        | 100           | 0000          |            | 1010     | 101770   |                                         | 4000           | 1013-0         | 0,010    | 0,440   | 0-101    | 77077    | 2017-0       |
|        | +41           | 0.000         | 00000      | 2.0111   | 0.0100   | 00000                                   | 0.0100         | 0.0100         | 4.5(1)   | 0.000   | 0.010    | 3.0611   | 1010.0       |
|        | FCIE          | 0.000         | 4.0111     | 0.010    | 0.100    | 0.000                                   | 0.010          | 0.0101         | 2.0611   | 0.000   | 0.000    | 6010.0   | 1010.0       |
|        | 1111          | 0-0101        | 0.0101     | 0.0101   | 0.0101   | 4010-0                                  |                | 1114.          | חחורים   |         | 1010.0   | 1010-0   | 10)7*7       |
|        | t US          | 0.010         | 0.0400     | 0.0101   | 0.0100   | 0.0100                                  | 6.0103         |                | 0.000    | 0.0101  | 6.0101   | 0.010    | ****         |
|        | 957           | 0.0101        | 0.0100     | 0.0101   | 0.010    | 0.0101                                  | C. C.C.        | .8611          | 0.0101   | 0.000   | C. C. C. | 0.0101   | 01010        |
|        | W 1           | D. 1101.      |            | 0.0101   | -1310-0  | וחותים                                  | 1010-11-       | 1119.          | 0,000    | 0.000   | 0000     | 0.0101   | 13177        |
|        |               | 0.010         | 0.000      | 0.00     | 0.000    | 0010.0                                  | 0.0            | 1.011          | 0.00     | 0.00    | 0.00     | 0.0      | 20.0         |
|        | £ 638         | 0.00          | 0.010      | 1.01     | 0.000    | 0000                                    | 0.00           | 20.0           | ( ) ( )  | 0.00    | 10000    | 0000     | 1011<br>1011 |
|        | 7774          | 1010          | סיתוחו     | 1115-1   | מיות הח  | 1010 ·                                  | 1010-1         | 0.000          | 0.010    |         |          |          |              |
|        | 794           |               |            |          |          |                                         |                |                |          |         |          |          |              |
|        |               |               |            |          |          |                                         |                |                |          |         |          |          |              |
| 1      |               | •             |            | ******   |          |                                         | *******        |                |          |         | ••••••   |          |              |

were the state of the state of

| Feks.  | ASSIGNT (I   | -64-1083 | 44-4005                                 | FF-1064. | -£6=109W        | 11 AN 112 EAST                          | ASSIGNMENT                             | FE-1004 FF-   | SH 2                                    | NUMBER<br>PP-1044 | 68K5 8<br>££#1061. FF#1047 |                                        | **-1015                                 |
|--------|--------------|----------|-----------------------------------------|----------|-----------------|-----------------------------------------|----------------------------------------|---------------|-----------------------------------------|-------------------|----------------------------|----------------------------------------|-----------------------------------------|
| EN3    | 71           | 0.000    | 3.0121                                  | 007.0    | 0.0100          | 0.000                                   | 0.0101                                 | 0.000         | 1010.0                                  | 00000             | 4.0(11)                    | 1010                                   | 00000                                   |
|        | 4704         | 0.000    | 0.0101                                  | 0.000    | 00000           | 10000                                   | 0.000                                  | 0.00          | 7110-7                                  | 0.00              | 0.00                       | 0.000                                  |                                         |
|        | AKT          | 0))      | 110 8                                   | 1 \$628  | 001000          | 040(0)                                  | 8000 <b>*</b> 0                        | 0.000         | 4.0411                                  | 0.00              | 0.0101                     | 0100                                   | 272                                     |
|        | HAL          | -1010-0- | be ut 31                                | 0-0101   | -0.0101         | 0.0101                                  | 0-0101-                                | 1013-0-       | 1710-7                                  | -101010-          | -0.010.0                   | 0.0101                                 | 0.101                                   |
|        |              | 0.000    | 0.010                                   | 3.5(11)  | 6010.0          | 6.0609                                  | 0.000                                  | 0.0101        | 0.010                                   | 0.0101            | 0.010                      | 0.0409                                 | 10100                                   |
|        |              |          |                                         |          |                 |                                         |                                        |               | • • • • • • • • • • • • • • • • • • • • |                   | •                          | ****                                   | • • • • • •                             |
| t N2   | 43           | 0.000    |                                         | 0.010)   | 0.010           | 0.010)                                  | 6.060                                  | 0.010         | 0.0101                                  | 0.000             | 0.000                      | 11.3(1)                                | 0.010                                   |
| !      |              | *******  |                                         | ****     | 4444            |                                         | *****                                  |               |                                         | T                 | 6                          | 9 9 9 9 9 9 9 9 9 9 9 9 9              |                                         |
| TH.    | H-4          | 0.010    | 0.000                                   | 0.0101   | 6.000           | 0.0(0)                                  | 0.010)                                 | 5.0111        | 0.010                                   | 0.0101            | 0.010                      | 3.0(11                                 | 1010.0                                  |
| 1      |              | 0-0101   | 7.0171                                  | 1000     | 00000           | 1010-0                                  | 0.0101                                 | 1115-1        |                                         | 1010-0            | - 0-010b.                  | 1-0611                                 | 1017-7                                  |
|        | - 1          |          |                                         |          |                 |                                         |                                        |               |                                         |                   |                            |                                        |                                         |
|        | 77           | 0-000    | 7-0111                                  | 2.6111   | 01010           | 0,40                                    | מיסים"                                 | 4119          | 10101                                   | חיחלחו            |                            | 10371-0                                | 0000                                    |
|        | 22           | 0.010    | 4.0111                                  | 0.000    | 0.0101          | 0.000                                   | 0.010                                  | 0.000         | 0.010                                   | 0.0100            | 0.00                       | 0.00                                   | 0.00                                    |
|        |              | *******  | ••••••                                  | ••••••   | • • • • • • • • |                                         | •••••                                  |               | ••••••                                  | ••••••            | ••••••                     | • • • • • • •                          |                                         |
| t MFA  | 474          | 0.0101   | 0.0                                     | 0.0(0)   | 0.0101          | 0.0101                                  | 1010.0                                 | .>(1)         | 00000                                   | 0.0101            | 0.0101                     | 0.000                                  | 2.000                                   |
|        | TUA          | 0-0101   | 0.0101                                  | 0.0101   | 0-0101          | 4010-0                                  | - u-utul                               | .5111         | 0.0101                                  | _                 | 0.6401                     | 0.0101                                 | 0-4401                                  |
|        | ••••••       |          | •••••                                   |          | •••••           | • • • • • • • • • • • • • • • • • • • • | •••••                                  |               | 7777                                    | 222245            |                            | •••••                                  |                                         |
| L MP N | 101          | 0.0101   | 0.0101                                  | 0.0101   | 0.000           | 0.0101                                  | 0.000                                  | 0.000         | 4.0110                                  | 0.0101            | 0.010                      | 1017-0                                 | 6.0101                                  |
|        | 174          | 0.000    | 40100                                   | 0.0101   | 49004           | -0-0101                                 | 0.0401.                                | - 0.0101      | 0-0101                                  | 0.0101            | 0.0101                     | . 0.0101                               | 1017-7                                  |
|        | AUT          | 0.010    | 0.000                                   | 0.010)   | 4.011)          | 0.010                                   | 0.000                                  | 0000          | 0.0101                                  | 0.010)            | 1010                       | 0.0401                                 | -2120                                   |
|        | ••••••       | ******** | • • • • • • • • • • • • • • • • • • • • | ****     |                 |                                         |                                        | • • • • • • • | •                                       |                   |                            |                                        |                                         |
| LM3    | AKT          | 0.0100   | 0.0100                                  | 0.0401   | 0.000           | 0.0101                                  | 0.0101                                 | .3(11)        | .>111                                   | 0.0101            | 0.0101                     | 0.010                                  | C. C. CO.                               |
|        | 122          | 0.0101   | 0.040                                   | 111      | 0-0101          | 0-0101                                  | 0-4404                                 | 1115          | -2111                                   | 0.000             | 4030-0                     | 0-0101                                 | 1937-7                                  |
|        | ra T         | 0.0101   | 0.010                                   | . 1111   | 0.000           | 0.0401                                  | 0.000                                  | .5111         | 4.0111                                  | 0.0101            | 0.00                       | 0.00                                   | 2000                                    |
|        | AKT          | 0.069    | 0.010.0                                 | 0.000    | 0000            | 0.0109                                  | 0.000                                  | 1114          | 0.0                                     | 0.0               | 0.0                        | 0.00                                   | 2010.0                                  |
|        | 1            | 0.0101   | 1010-0                                  | -0.0101  | 1010-0          | 0-0101                                  | U. utul                                | 1115          | 0-1101                                  | 0.0101            | 00100                      |                                        | ייייייייייייייייייייייייייייייייייייייי |
|        | F CT         | 0.000    | 6.66.                                   | 0.060    | 1030.3          | 0.0101                                  | 1.5(1)                                 | 0.000         | 0700                                    | 0.000             | 010                        | 00110                                  | 2010                                    |
|        | EST          | 0.00     | 0.00                                    | 0000     | 0.0101          | 0000                                    | 1. 16 40                               | 0.010         | 0000                                    | 00000             |                            | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                         |
|        | 177          | 0.000    | 0.0101                                  | 0.0101   | 0-0101          | 0.0101                                  | 1. 34.1 P.                             | 1010-0        | - 0000                                  | 0.0401            |                            |                                        | *****                                   |
|        | AU26         | 0.000    | 6.0101                                  | 0.0103   | 4.c(1)          | 2000                                    | 2010.0                                 | 01010         | 1010.0                                  | 00000             | 1010                       |                                        |                                         |
|        | :            | 0.000    | 0.000                                   | . 36.10  | 0000            | 0.010                                   | 0000                                   | 0000          |                                         | 1010.0            |                            |                                        |                                         |
| •      | i            | 0-0161   | 1010-0                                  |          | 0-0101          | 1010-0                                  | 1010-1                                 | 0.000         | מיים ו                                  | 0.0101            | 1010-0                     |                                        |                                         |
|        | ALT          | 0.00     | 2000                                    | . 36.1   | 1000            | 0.000                                   | 1090.0                                 | 0.0           | 1013.0                                  | 0.010             | 33.0                       |                                        |                                         |
|        | 117          | 1010.0   | 1010.0                                  | 1116.    | 1010-0          | 1010.0                                  | 0.010                                  | 1010.0        |                                         | 010.0             |                            |                                        |                                         |
|        |              | 1010-0   | חיחים                                   | . 3110   | U.L. U.L.       |                                         | יייייייייייייייייייייייייייייייייייייי | מירותו        |                                         |                   |                            |                                        |                                         |
|        | ************ |          |                                         |          |                 | ****                                    | *****                                  |               |                                         |                   | * * * * * * * *            |                                        | , , , ,                                 |

| PLKS. | ASSIGNED                                |               |                   |                 |                                        | MLAN        | ASSIUNAL NI IINL  | INT LIMES               | by SHIP   | NUMBER   | (HK)    |                 |                                         |
|-------|-----------------------------------------|---------------|-------------------|-----------------|----------------------------------------|-------------|-------------------|-------------------------|-----------|----------|---------|-----------------|-----------------------------------------|
| PEALL | MILLAN                                  | FF:=1083      | FE-10E5           | FE=1000-11-1000 | - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1601-44     | **= 104Z          | teriouz.Ef-1694 ff-1085 |           | 7801-44  | FF-1041 | 15.77-44        | 11-1612                                 |
| LCCK  | f 6.                                    | 0.0101        | 0.010             | 0.000           |                                        | 0.0100      | 0.0100            | 0.000                   | 0.000     | 0.000    | 0.0100  | 1715.           |                                         |
| :     |                                         |               | 1 1 2 1 2 1 2 2 1 | 9 2 6 2 2 2 2 2 | *****                                  |             | *******           | ********                | *****     |          | ••••••  | ••••••          | •••••••                                 |
| Ł NS  | LKI                                     | 0.010         | 0.0101            | 0.010.0         | 010.0                                  | 0.000       | 0.0101            | 0.0101                  | 0.000     | 0.0101   | .811)   | 11.1(1)         | 0000                                    |
|       | 124                                     | 0-0461        | 0-utus            | 0.6464          | 4073-0                                 | -4-4104     | -nental-          | -0.0101                 |           | -101101- | 1778    | - 1-u41         |                                         |
|       | AKT                                     | 0.000         | 0.100             | 0.0101          | 1017.7                                 | 0.000       | (a) a · a         | 0.0101                  | 0.0100    | 0.010.0  | 1110.   | 1.061.          | C                                       |
|       | 744                                     | 0000          | 0.00              | 0.000           | 0.010                                  | 6.010.0     | 010.0             | 0000                    | 7.011)    | 01010    | .6(1)   | 1.0111          | 0000                                    |
|       | 777                                     | 1017-0        | 1011-0            | 0-110           | 0-1101                                 | -0.0101     | - U-1101          |                         | 1110-1    | 1010     | 1-3641  | 0-1101          | 1017-0                                  |
|       | 277                                     | 0.00          | 2000              | 0.00            | 1010.0                                 | 0.00        | - c(c)            | 00000                   | 0.010     | 1010.0   | 0.0(1)  | <b>6</b>        | 1070.0                                  |
|       | 61.10                                   | 0000          | 0.010             | 0.0101          | 0000                                   | 0.040       | 0.000             | 1010.0                  | 7.5111    | 00000    | 01010   | 0.0100          | 0.000                                   |
|       | 700                                     | 0.000         | 1010-0            | 0.0101          | 0-6604                                 | 1000-0      | 1010-0            | 0010-0                  |           | 0.000    | 0-0101  | 0.0104          | 43100                                   |
|       | • • • •                                 |               |                   |                 |                                        |             |                   |                         | 11)5.     |          |         |                 | 101010                                  |
|       |                                         |               | _                 |                 |                                        |             |                   |                         |           |          |         |                 |                                         |
| •     |                                         |               |                   |                 |                                        |             |                   |                         |           |          |         |                 |                                         |
| 1110  | 4 5 1 4                                 | 0.00          | 0.0101            | 0.0101          | 0.000                                  | 0.0101      | 0.0101            | 0.0101                  | 0.000     | .5(1)    | .5(1)   | 60101           | 10100                                   |
|       | 6010                                    | 0.000         | 0-000             | 0.0104          | 0-4404                                 | 0.0404      | 0.0144            | -01010-                 | 0-0101    | 0.0101   | -3111   | 0.0101          | - 4-4101                                |
|       | t S1                                    | 0.010         | 1010.0            | 0.0100          | 0.0401                                 | 0.0101      | 101000            |                         | 1010.0    | 0.000    | . 1441  | 0.0100          | 1010.0                                  |
|       | F U II                                  | 9.0101        | 0.0101            | 0.0100          | 0.000                                  | 0.0101      | ( · · · · · · · · | 0.000                   | 0.000     | 0.000    | 1116.   | 0.010           |                                         |
|       | 4 14/4                                  | 1017-0        |                   | -0.utul         | -0-0404                                | -40101-     | - U. Latur        | -1010-0                 | 0-0101    | 40101    | -1111-  | 0. utul         | - 1917-0-                               |
|       | - 4                                     | 0.000         | 1010.0            | 1.3121          | 6.0100                                 | 0.0103      | 0.0101            | C. C.C.O.               | . 3(1)    | .5(1)    | 1.0110  | [3 <b>33.</b> 3 | 10101                                   |
|       | FRT                                     | 0.00          | 4010.0            | 1.0(1)          | 0.0101                                 | 0.000       | 0.0101            | 0.0(0)                  | 1716.     | 0.0100   | 1.0115  | 0.010           | 2000                                    |
|       | 1                                       | 0-0101        | 0-0101            | 4779            | 0-0400                                 | 0.0101      | 4010.0            | 0-010                   | 0-0101    | 7.011    | 11001   | -0.000          | 0.000                                   |
|       | ¥ ;                                     | 010.0         |                   | 1714            | 00000                                  | 2000        |                   | 0000                    | 0010      | 0.0101   | 1.011   | 0.00            |                                         |
|       |                                         |               |                   | 1010.0          | 0.000                                  | . 511       |                   |                         | 00000     | 00000    | 0.000   | 0.00            |                                         |
|       |                                         | 1010          | 1017-0            | 0.00            | 1000                                   | 71177       | 1010-0            | 0.010                   | 0.010     | 0.000    | 0.000   | 1010-0          | 1017-0                                  |
|       | : ;                                     |               |                   |                 |                                        |             |                   |                         |           |          |         |                 |                                         |
|       | FAT                                     | 0.010         | 0.4401            | 3611            | 01010                                  |             |                   | 0.010                   |           |          |         |                 | 0.000                                   |
|       | 1111                                    | 1.001         | 0-1.00            | 0.6401          | 0.000                                  | 00100       | 0,000             | 0.000                   | 101010    | 0.00     | 1013    | 0.000           | 100,000                                 |
|       |                                         |               |                   |                 |                                        |             |                   |                         |           |          |         |                 |                                         |
|       |                                         |               |                   |                 |                                        |             |                   |                         |           |          |         |                 |                                         |
| 11    | AAT                                     | 0.0101        | 0.0101            | 0.0101          | 4.041)                                 | 0.000       | 0.0400            | 0.0403                  | 0.0100    | 0.0(0)   | 0.000   |                 | 6.0101                                  |
|       | AULA                                    | 0.00          | - U- U4 01        | 4010-0          | 0-0101                                 | -0-0101     | -0.0101           | -10101-0-               | -0.0101   | - 0-0104 |         | 0.010           | 0-110                                   |
|       | 1110                                    | 0000          | 0.0101            | 0.0101          | 6010.0                                 | 0.010       | 6.0101            | 1010.0                  | 11)5.7    | 0000     | 0.0100  | 0.00            |                                         |
|       | 1 5 1 10                                | 0.00          | 2000              | 0.000           | 01010                                  | C. C. C. C. | 20.0              | 0.000                   | 11)4.     | 0.010    | 0.000   |                 |                                         |
| :     |                                         | 1017-0-       | - 6077-7          | 0-0101          | -10101-7                               | 1010-0-     | 0.440             | 1010.0                  | 1115.     | 1010.0   | 1030-0  |                 |                                         |
|       | ALO                                     | 0.00          | 0.000             | 0.000           | 1010.0                                 |             | 00000             |                         | 11)5.     |          |         |                 |                                         |
|       | ]                                       |               |                   |                 |                                        |             |                   |                         |           |          |         | 0-0104          | 0-101                                   |
|       |                                         |               |                   | 0.000           | 00000                                  |             |                   |                         | 0.00      | 0.0100   | 0000    | 00000           | 00000                                   |
|       |                                         | 101010        | 000000            | 1.5(1)          | 7.6111                                 | 0.010       | 00100             | 60.00                   | 00000     | 0.000    | 0.000   | 60100           | 2010.0                                  |
|       | 1 11 4                                  | 0.4401        |                   | 0-1101          | 7-6(11                                 | 0.17.0      | 1010.0            | 0.016                   | 0.000     | 0.0101   | 6.0101  | 0.000           | 1010.0                                  |
|       | AKT                                     | 0.0100        | 60100             | 0.0101          | (110.7                                 | 0.010       |                   | 0.010.                  | 0.0100    | 0.010    | 0.010   | ( ) ( ) ( )     | 6010.0                                  |
|       | ••••••••                                |               | ••••••            |                 | ••••••                                 |             | •••••             | •••••                   | •         | •        |         | •               | • • • • • • • • •                       |
| -     | 2                                       | 0.0101        | (1)0-1            | 0.0101          | 10)770                                 | 0000        | 2000              | 6353                    | 0.00      | 1010     | 4.0(1)  | 1010.0          | 1377.3                                  |
|       | 197                                     | 0.010         | 60100             | 101000          | 1017.0                                 | 4010.7      | 4.0103            | 0.0101                  | 00000     | 0.0101   | 7.0113  | 6.000           | [3]                                     |
|       | 244                                     | 0.1101        |                   | 0.660           | 0.0100                                 | 5.0101      | 1010.3            | (0)0.0                  | 4.2111    | t. C401  | 2000    | 6010.0          | 1010-1                                  |
| _     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • | ••••••            |                 |                                        | ••••••      | ******            | *******                 | • • • • • |          |         |                 | • • • • • • • • • • • • • • • • • • • • |

# APPENDIX E

Individual Noise Exposure Results For Each Ship Using Noise Levels Measured at Individual Locations

# PERSONNEL NUISE EXPOSURE AND IMPAUT

FF-1083 USS COOK

| GRADE GRADE      | . UF     | 30000     | LEV: L   | UNILY  | NU154 6054 |
|------------------|----------|-----------|----------|--------|------------|
| CODE DESCRIPTION | ~ン。      | REAN      | no.L.    | Mc # 1 | n.i.       |
| 60200 LTJ6       | 1        | 71.0      | 71.6     | . 67   | 7          |
| ZC7CO MMFA       | l        | 13.4      | 10.7     | .24    | • ८ ८      |
| - 20661          | · 1      | 70401     | 64.U     | • (*5  | • UD       |
| 206CC MMFN       | 1        | 66.0      | ما م ياق | • 45   | • 6 3      |
| 2(501 km3        | 1        | 74.9      | 14.4     | • 25   | • 6 %      |
|                  | <b>1</b> | 05.7      | 22.1     | . 63   | • 5 3      |
| 20401 MM2        | 1        | £2.4      | BLOC     | . 14   | . 34       |
| 20400 mm2        | 1        | 40.0      | 70.0     | . ( 6  | • 60       |
| ~ 20301          | 1        |           | - 41 .4  | 1.61   | 1.41       |
| 20300 nml        | 1        | 11.0      | 77.0     | . 4    | • 4        |
| 16762 17FA       | 1        | 67.4      | 4002     | • 42   | 4.00       |
| ·· 1676;         | - 4      | 50.2      | 55.2     | . 52   | • 54       |
| 10700 ETF#       | 1        | c 4 • 0   | (4.E     | . 41   | • 45       |
| 10602 LTFA       | ì        | 77.4      | 14.4     | 5      | • 25       |
| ·106(-1+TF#      | ì        | C 70 - 41 | 52.4     | • 5 3  | • 53       |
| 10660 oten       | 1        | 05.9      | 53.5     | .57    | .57        |
| 10500 673        | 1        | · 6 • 4   | 64.9     | .38    | • 3 t      |
| -1646            | - 1      | ***       | MANA     | . 64   | ₹.60       |
| 16462 £T2        | 1        | 71.1      | 44.1     | 1.10   | 4.16       |
| 10461 oT2        | ĩ        | 2401      | 54.1     | . 44   | .44        |
| -16466           | 1        | C 0 . 7   | -0:.4    | • 65   | • 65       |

#### PERSUNNEL NUISE EXPOSURE AND IMPACT

THRESHOLD LEVEL = 80.0 DEA 6-TH PENTISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = = 5 DEA

# FF-1065 USS STEIN

| GRADE       | GRADE                                         | NU. UF     | SOUND                                   | LafaL       | UFILY :         | UISE DESE               |
|-------------|-----------------------------------------------|------------|-----------------------------------------|-------------|-----------------|-------------------------|
| CODE        | DESCRIPTION                                   | PERSO      | REAR                                    | Hece        | reat            | <b>Mele</b>             |
| 50502       | ŁN3                                           | 1          | #¥ # <del>¥</del>                       | ****        | •6.6            |                         |
| 50501       | LN3                                           | 1          | water.                                  | ***         | •56             | 0.30                    |
| - 56560     | <del></del>                                   | ì          | <b>MATER</b>                            | ****        | • 4: (.         | 6.00                    |
| ういろしう       | ENI                                           | 1          | <b>STATES</b>                           | ****        | • d€            | 6.00                    |
| 36201       | FA                                            | 1          | ****                                    | -           | • 60            | 11.66                   |
| 30200       | · ——— 🛦 - · · · · · · · · · · · · · · · · · · |            | t.2 . 13                                | 62.6        | <b>ف</b> و .    | . 33                    |
| 30100       | FN                                            | 1          | 26.3                                    | 54.9        | • 35            | .47                     |
| 20612       | MMEN                                          | 1          | 99.5                                    | 45.4        | 1.57            | المفاضا                 |
| 26661       |                                               | <b>4</b> . | 79.4                                    | 43.5        | 1.13            | iote                    |
| 20600       | onfr                                          | 1          | 67.7                                    | 44.02       | • 76            |                         |
| 20504       | mm3                                           | 1          | cool                                    | 30          | • <b>&gt;</b> t | • > :                   |
| 26563       | <b>44</b> 63                                  | 1          | マニ・ウ                                    | 74 · c      | 1.4b            | 1.74                    |
| 20502       | nn3                                           | 1          | 90.00                                   | 7 0         | i e u b         |                         |
| 20561       | nn3                                           | ì          | 11.0                                    | 1100        | .15             | .15                     |
| <del></del> | 443 · · · · · ·                               | 2          | 10.4.                                   | 51.7        | • = 6           | • 32                    |
| 204C2       | r.r 2                                         | 1          | 60 e 6                                  | 6: . 3      | • 0 5           | • 45                    |
| 20461       | MMZ                                           | 1          | 71.5                                    | 41.5        | 1064            | 1.24                    |
| - 26466     |                                               |            | ほとなべ                                    | ***         | • •••           | 0.61                    |
| 20302       | mml.                                          | 1          | 7 7 . 1                                 | 79.1        | • 42            | • 66                    |
| 20301       | mm1                                           | 1          | 43.4                                    | 45.4        | 1.61            | 4.ti                    |
| <del></del> |                                               | 1          | c1.6                                    | ⊕/•u        | • c t           | • Ot                    |
| 20200       | mMů                                           | 1          | ***                                     | <b>HADA</b> | •66             | 4.4.L                   |
| 10761       | bTFA                                          | 1          | 6 6 0 3                                 | 64.5        | ٠ ه د ٠         | -44                     |
| 16760       |                                               |            | 4.00                                    | 60.9        | • > 7           | • > i                   |
| 10602       | eTFN                                          | 1          | とりゃく                                    | じン 49       | . 51            | <ul><li>&gt;c</li></ul> |
| 10601       | eTFt-                                         | 1          | 15.5                                    | 7:00        | • 14            | 4                       |
| - 16660     |                                               |            | - 71.0                                  | <del></del> | 1.24            | 1.69                    |
| 10502       | 6T3                                           | 1          | 62.6                                    | とシ・し        | .54             | . 54                    |
| 16561       | 5 <b>T3</b>                                   | 1          | 14.0                                    | 74.0        | • 4 1           | .11                     |
|             |                                               | ·1 .       | 42.0                                    | 42.0        | 1.40            | 4.40                    |
| 10460       | 5T2                                           | 1          | 62.0                                    | £0.J        | • >0            | • > 7                   |
| 10300       | 6T1                                           | 1          | و . ن ن                                 | 52.c        | • 4 6           | .37                     |
|             |                                               | 1          | - · · · · · · · · · · · · · · · · · · · | 04 · t      | . 49            | .44                     |

well and the same

#### PERSUNNEL NUISE EXPUSURE AND IMPAUT

# FF-1084 USS CANDLESS

| CODE   DESCRIPTION   FER.3.   R.AH   N.C.   R.EF.   N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GRADE                | GRADE              | NL. UF                                 |                   | LEVEL                                   |           | No.152 6652    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|----------------------------------------|-------------------|-----------------------------------------|-----------|----------------|
| 60201 LTJC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CODE                 | DESCRIPTION        | ************************************** | MAAM              | h. L.                                   | Mr. S. Fr | <b>*</b>       |
| 00   00   00   00   00   00   00   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60202                | LTJG               | 1                                      | 12.1              | 75.4                                    | .18       | .15            |
| Delice   LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60201                | LTJG               | 1                                      | ε0.3              | 63.6                                    | . 20      | -41            |
| 1   96.4   90.4   2.44   2.44   2.44   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   345   3 | - <del>6</del> €∠€0  |                    |                                        | C4.1              | 65.4                                    | . 44      | .54            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6(1Ct                | LT                 | i                                      | 74.1              | 75.4                                    | • U C     | .13            |
| 50 3 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50501                | EN3                | 1                                      | 46.4              | 46.4                                    | c . 44    | 6.44           |
| 40500   EP3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | t N3               | · · · · · · · · · · · · · · · · ·      | 45.4              | -41.0                                   | c.11      | 6 . Of         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50300                | Ł N I              | 1                                      | 166.5             | 100.5                                   | 4.48      | 4.60           |
| ### ### #### #### ####################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40500                | £M3                | 1                                      | 70.4              | 71.5                                    | .07       | .07            |
| 30300 FF 1 74.2 77.5 11 10  30102 FN 1 07.1 70.4 004 007  30101 FN 1 05.3 00.0 52 052  30100 FN 1 70.9 0.0 21 27  20700 MMFA 1 07.1 07.0 71 71  20002 MMFN 1 00.3 00.3 20 20 20  20003 MMFN 1 00.3 00.3 20 20 20  20004 MMFN 1 00.3 00.3 20 20 20  20004 MMFN 1 00.3 00.3 20 20 20  20004 MMFN 1 07.5 30.9 71 00  20504 MMS 1 07.5 30.9 71 00  20502 MMS 1 01.0 01.0 02 45 29  20502 MMS 1 01.0 01.0 01.0 02  20504 MMS 1 01.0 01.0 01.0 02  20505 MMS 1 01.0 01.0 01.0 02  20506 MMS 1 01.0 01.0 01.0 01.0 01.0 01.0 01.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>          | <del></del>        |                                        | 7-4 , 4           | 74 . 4                                  | .12       | . 14           |
| 30102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40200                | EMC .              | 1                                      |                   | 41.3                                    | • 40      | 1.26           |
| 301(1 FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | FR                 | 1                                      |                   | 71.5                                    | .11       | • i o          |
| 30100   FN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                    | · · · · · · · · · · · · · · · · · · ·  | e7.i              | 70.4                                    | • 04      | •07            |
| 20003   MMFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | • •                | À                                      | €•€3              | 80.0                                    | • 5 &     | • 5.2          |
| 20003   MMFt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                    | 1                                      | 70.9              | 8 6                                     | .21       | • 27           |
| 20002   mmfn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 20760 -            | • • • •            | . 1                                    | 61.1              | e/.i                                    | . 67      | .67            |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20003                | mmFt               | ì                                      | 27.5              | 81.5                                    | • 71      | .71            |
| 20000 MMFN. 1 07.5 30.9 .71 .00 20504 MM3 1 00.0 01.0 0.9 .29 .29 20502 MM3 1 04.7 00.2 .45 .59 20501 MM3 1 04.0 72.0 .06 .06 -20500 MM3 1 04.0 01.0 0.2 .45 .59 20401 MM2 1 01.0 01.0 0.0 .29 .29 20400 MM2 1 01.0 01.0 0.0 .00 -10701 STFA 1 03.5 80.4 .41 .01 1(700 LTFA 1 07.4 0.5 .70 .01 10000 DTFN 1 02.0 00.0 .03 10004 DTFN 1 79.0 79.0 .22 .22 10003 DTFN 1 00.8 00.8 0.8 .25 -10002 DTFN 1 04.2 85.0 .25 .25 -10003 DTFN 1 04.2 85.0 .45 .50 10000 DTFN 1 04.2 85.0 .45 .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - · · · <del>-</del> |                    | 1                                      | ک • v ه           | 80.3                                    | • 40      | • 4 5          |
| 20504 RM3 1 SE-1 80-1 -77 -77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>          |                    | <b>1</b>                               | ~ <b>&gt;⊍•</b> + | ・カロッセ                                   | • 66      | v • 30         |
| 20503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | MMEN               | 1                                      | 07.5              | ) 5 · Y                                 | .71       | • 0 t          |
| 20502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    | 1                                      | 55.l              | 80.1                                    | . 77      | •77            |
| 20501   MM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20503                | <b>n</b> #3        |                                        | <b>∵ 1 •</b> €    | ···-•46                                 | 4         | • 24           |
| 20566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    | 1                                      | 14.7              | 00.02                                   | . 45      | •54            |
| 20401     MM2     1     01.0     81.0     .29     .29       20400     MM2     1     1     1     1     .00     .00       10701     5TFA     1     03.0     60.4     .41     .61       10700     1 TFA     1     07.0     .01       10600     5TFA     1     02.0     64.0     .37     .47       10605     5TFA     1     00.0     00.0     .03     .63       10604     5TFA     1     01.0     80.0     .25     .22       10602     5TFA     1     01.0     80.0     .25     .25       10601     5TFA     1     04.2     85.0     .45     .45       10600     5TFA     1     04.0     85.0     .45     .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | · -                | 1                                      | 1000              | 72.6                                    | • ( 6     | •06            |
| 20400       MM2       1       1       1       1       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 <td></td> <td></td> <td> · · · · · · · · · · · · · · · · ·</td> <td> მეტ გ4 ⊹-</td> <td><del>-c</del>:1.7</td> <td>•6(1</td> <td>.75</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                    | · · · · · · · · · · · · · · · · ·      | მეტ გ4 ⊹-         | <del>-c</del> :1.7                      | •6(1      | .75            |
| 10701 bTFA 1 03.0 80.4 .41 .61 11700 tTFA 1 170.4 d .5 .70 .61 1000 cTFN 1 02.0 64.5 .37 .47 10605 bTFH 1 00.6 00.6 .63 .63 10604 bTFN 1 79.0 79.0 .22 .22 10003 bTFN 1 00.8 80.8 .25 .25 -10602 bTFN 1 04.2 85.0 .45 .50 10600 bTFN 1 04.2 85.0 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | · · · <del>-</del> | 1                                      | U & . U           | とえるじ                                    | . 64      | •24            |
| 1 (700 ETFA 1 (704 d 5 .70 .01 1000 DTFN 1 02.00 B4.5 .37 .47 10605 DTFH 1 00.0 00.0 .03 .03 10604 DTFN 1 79.0 79.0 .22 .22 10003 DTFN 1 00.0 80.0 .25 .25 10602 DTFH 1 77.4 77.4 .17 10601 ETFN 1 04.2 85.0 .45 .50 10600 DTFN 1 04.2 85.0 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                    | 1                                      | ***               | 4                                       | • 66      | <b>↓ •</b> ∪ ( |
| 10cCc offn 1 02.00 64.5 .37 .47 -106C5 ETFH 1 00.0 00.0 .03 .03 -106C4 offn 1 79.0 79.0 .22 .22 -106C3 offn 1 00.0 80.0 .25 .25 -106C2 Offn 1 04.2 85.0 .45 .50 -106C0 offn 1 04.2 85.0 .45 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                    | <u>1</u>                               | せきゅう              | · 60 +4                                 | .41       | • 6 1          |
| 10665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    | 1                                      | (7.4              | d •>                                    | .70       | • 01           |
| 10604 bTFN 1 75.0 77.0 .22 .22 10603 bTFN 1 00.8 80.8 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    | 1                                      | 52.5              | 64.5                                    | 7 د •     | .47            |
| 10003 bTFN 1 00.8 80.8 .28 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | =                  |                                        | 60.5              | • · · · · · · · · · · · · · · · · · · · | . 63      | . 6.3          |
| 16662 5TFM 1 77.4 77.4 .17 .17 16661 ETFN 1 04.2 85.0 .45 .50 16666 BTFN 1 64.3 64.3 .45 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                    | _                                      |                   | 79.6                                    | • • •     | .26            |
| 10601 ETFN 1 04.2 85.0 .45 .50 10600 BTFN 1 64.3 64.3 .45 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    | 1                                      | 06.8              | 86.8                                    | .25       | . 43           |
| 10600 bTFN 1 64.3 64.3 .45 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · <del>-</del> |                    |                                        | - 77.4            | 77 •4                                   | . 17      | • 17           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                    | 1                                      | 04.2              | 85 · U                                  | • 45      | •50            |
| 10501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    | •                                      |                   | 64.3                                    | . 45      | • 45           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10501                | ь Т.3              |                                        | - 11.4            | 7006                                    | 417       | •14            |

#### PERSUNNEL NUISE EXPUSURE AND IMPAUT

#### FF-1084 USS CANDLESS

| GRADE<br>CODE                 | GRADE<br>DESCRIPTION | Nu. UF<br>PEKS. | SCUND<br>NEAN | Level<br>h.u. | UAILY<br>ML AN | Na15z 8u5.<br>N.C. |
|-------------------------------|----------------------|-----------------|---------------|---------------|----------------|--------------------|
| 10500                         | еТЗ                  | 1               | 0.63          | 60.6          | ئاد.           | • 5 C              |
| 10400                         | BT2                  | 1               | 01.1          | 64.6          | . 24           | د د .              |
| <del>10</del> 30 <del>0</del> | e11                  |                 | 19.5          | 77.4          | .12            | .17                |
| 10201                         | ьTC                  | 1               | 10.0          | 71.00         | .16            | • 11               |
| 10200                         | ETC                  | 1               | <b>NAME</b>   |               | • L C          | 0.00               |

# PERSUNNEL NUISE EXPOSURE AND IMPAUT

THRESHULE LEVEL = 50.00 JUN 5-HR PERMISSITUE LEVEL = 90.00 CLA TEXTHANGE RATE = 5 UEA

# FF-1097 USS MOINESTER

| GRADE<br>CODE        | GRADE<br>DESCRIPTION | NU. UF     | SCUND LEVEL |         | DAILY      | Nu156 605. |
|----------------------|----------------------|------------|-------------|---------|------------|------------|
|                      |                      | Piks.      | おこんり        | n. L.   | TIE AT     | <b>*</b>   |
| 40500                | EM3                  | 1          | 16.7        | 75      | . 4 5      | • 20       |
| 40400                | tm2                  | ì          | 64.0        | 61.0    | 4          | • 64       |
| 46366                |                      | <u>1</u>   | 73.6        | 2.45    | . 34       | •47        |
| 26702                | nrfa                 | 1          | 71.0        | 12.00   | 7          | • (. /     |
| 20701                | FMEA                 | ī          | しちゅう        | 65.4    | .57        | • > 1      |
| 26760                | hnfg                 | - <u>1</u> | 54.4        | c4 • 4  | . 44       | • 47       |
| 20504                | n#3                  | ī          | 7.00        | 7       | 7          | • 7        |
| 20563                | mh3                  | ĩ          | 33.0        | نا. د ن | ئ<br>غ د • | • 3 5      |
|                      |                      | ì          | 41.0        | 44      | 1.15       | 1.49       |
| 20501                | rr3                  | ī          | 30.4        | e>.7    | . 51       | •55        |
| 20500                | กท3                  | 1          | 54.4        | 54.4    | اد.        | آذ.<br>آذ  |
| -20460               | <del>66</del> 2      | <b>1</b>   | 20.1        | t7.3    | . 77       | •71        |
| 20306                | mal .                | <u>,</u>   | MANAX       | MANA    | .00        | J • 110    |
| 20260                | MFC                  | ì          | :403        | 00 · 3  | .45        | • 52       |
| 44766                | etfa =               | i          | 60.1        | es.1    | .77        | .17        |
| 1(663                | LTFN                 | ī          | 70.7        | 4.00    | 1.10       | 4.41       |
| 10602                | DTFN                 | ī          | 99.0        | 92.5    | ٠. ١4      | 60.4       |
| - · · · ±0-661 ··- · |                      | <u>1</u>   | 73.7        | 79.6    | 1.05       | 4.10       |
| 10600                | LTFN                 | ī          | O. C        | 81.0    | • 64       | رائن و     |
| 10563                | t T3                 | 1          | 94.00       | 7.06    | 1.32       | 1.20       |
| 10502                |                      | <u> </u>   | 76.5        | 90.5    | 1.05       | 4.00       |
| 16501                | ŁT3                  | ī          | 50.7        | 90.0    | 1.11       | 1.47       |
| 10500                | LT3                  | ī          | و و ی ع     | 90.3    | • ( )      | 1.04       |
| 10461                |                      |            | - 4744      | AXAA    | • • (      | U = U(1    |
| 10400                | ETZ                  | ī          | 20.13       | 06.6    | .57        | • > 7      |
| 10300                | t T I                | _          | 42.0        | 100.3   | 2.63       | 4.15       |
| -10260               | - <del>-</del>       | - ī        | 70.2        | 70.5    | د عن       | 2012       |
| -                    | •                    | -          |             | , , ,   | E # 2 (:   | J 6 C J    |

#### PERSONNEL NUISE EXPUSERE AND IMPACT

THRESHOLD LEVEL = 50.0 DON 8-HR PERMISSIBLE LEVEE = 90.0 COA TREMANCE RATE = 5 DOA

#### FF-1090 USS AINSWORTH

|   | GRADE             | GRADE                                 | NU. OF                                 |                | LEVLE          |              | Nuise bus    |
|---|-------------------|---------------------------------------|----------------------------------------|----------------|----------------|--------------|--------------|
|   | CODE              | DESCRIPTION                           | PERS.                                  | MEAN           | h.L.           | <b>17.44</b> | *.L.         |
|   | 60100             | LĪ                                    | 1                                      | 43.6           | 40.6           | 1.65         | 6.44         |
|   | 40601             | EMFN                                  | 1                                      | 61.6           | 6.60           | 1د .         | • 41         |
|   | <b>40666</b>      | tHFK                                  |                                        | てフ・ち           | te.s           | • > 5        | • 65         |
|   | 40560             | L Fi 3                                | 1                                      | ರ <b>ಿ</b> • છ | <i>نا ه ان</i> |              | • (5         |
|   | 20 <b>7</b> 00    | MHFA                                  | 1                                      | ***            | 83.4A          | .00          | C-95         |
|   | ·· 20002 ·        |                                       |                                        | -74.0          | 74.0           | . 11         | • 41         |
|   | 20601             | nnfr                                  | 1                                      | 62.0           | 66. L          | .33          | <b>د د .</b> |
|   | 20000             | MMEN                                  | 1                                      | 8.00 B         | bi . t         | . 64         | - 54         |
|   | <del>205</del> 62 | <del></del>                           | ······································ | 43.9           | ·· 71.5        | 1.56         | 2.93         |
|   | 20501             | <b>r</b> r3                           | 1                                      | 50.B           | 30.00          | . £4         | .04          |
|   | 20500             | MM3                                   | 1                                      | 90.0           | Yi.t           | 1.04         | 1.24         |
| - | ~2646z -          | ·· ·······                            | 1                                      | · st.l         | £5.1           | • 5 દ        | • 5 €        |
|   | 20461             | n#2                                   | 1                                      | 10.6           | 10.00          | . 14         | .14          |
|   | 23466             | nr2                                   | 1                                      | 07.4           | 07.4           | .76          | .79          |
|   | 16763             | · · · · · · · · · · · · · · · · · · · | 1 ·                                    | 50.3           | <b>5€.</b> 5   | • 4 5        | • Z ti       |
|   | 10762             | ETFA                                  | 1                                      | 12.4           | <b>さょ・</b> フ   | . 35         | .41          |
|   | 10701             | LTFA                                  | 1                                      | 12.4           | 65.4           | د د .        | •4L          |
|   | 16700 -           |                                       |                                        | - 14.5         | 14.4           | . 12         | -12          |
|   | 16666             | ETEN                                  | 1                                      | t 2.7          | 84.0           | • 3 t        | .43          |
|   | 10500             | rT3                                   | 1                                      | £1.6           | 21.0           | 1د .         | .3:          |
|   |                   | <del></del>                           |                                        |                | t2.1           | . 23         | • 3 3        |
|   | 10200             | oTC                                   | 1                                      | 17.7           | ده و ب         | . 64         | .40          |
|   |                   |                                       |                                        |                |                |              |              |

#### PERSONNEL NULSE EXPOSORE AND IMPLOT

THRESHOLD LEVEL = CC. C DEA 8-HR PERMISSIBLE LEVEL = 90.0 DEA THRETHANGE RATE = 2 DEA

# FF-1091 USS MILLER

| GRADE                  | GRADE        | NU. UF     | ろこひれた         | LLVIL  | BALLY | NUTSE BUSH     |
|------------------------|--------------|------------|---------------|--------|-------|----------------|
| CODE                   | DESCRIPTION  | PENS.      | HEAR          | h.u.   | 11-2  | n.c.           |
| <b>6</b> 0200          | LTJU         | 1          | 70.0          | 77.4   | • . 4 | .1/            |
| 60100                  | LT           | À          | 74.4          | 10.1   | 1     | • 17           |
| ~ ~ <del>46366</del> ~ | - <u>t-1</u> | <b>1</b>   | ***           | ***    | • 0.0 | U.S.           |
| 200(1                  | PMFN         | 1          | 04.9          | 63.4   | 7     | ز ر •<br>ز ر • |
| 20600                  | r.mFt-       | 1          | 71.7          | 41.9   | 4.31  | 1.31           |
| 26401                  |              | - <b>1</b> | 71.7          | 91.5   | 1.23  | 1.63           |
| 26460                  | m#2          | ī          | 94.4          | 9.09   | اد،ا  | 1.31           |
| 20300                  | rh1          | 1          | 20.4          | BU . 9 | .65   | • 5 5          |
| ~20z00 ·               |              | <u>1</u>   | XXXX          | MEM    | • 00  | ε •θ¢          |
| 10701                  | c THA        | 1          | 33.4          | 96.06  | ٠ د ل | 1.12           |
| 10766                  | ETFA         | 2          | 65.2          | 9      | • 24  | 1.05           |
| 16060                  | aten aten    | -          | 71.4          | 7: • 0 | 1.14  | 4.45           |
| 16665                  | ETH          | ī          | · 7 · 1       | 5/     | 7     | •61            |
| 10664                  | LTHI         | i          | المعان        | 85.1   | 40    | •71            |
| 10±03                  | +1fh ···     | •          | 5 C . *)      | 77.9   | • 05  |                |
| 10602                  | t Tf t.      | ,          | υ <b>7.</b> 3 | 57.5   | .73   | • 5 5<br>7 4   |
| 10601                  | LTFT         | 1          | 60.9          | u      | • 65  | • 7 3          |
| - 10660                | bIFm         | . 1        | 53.7          |        |       | .16            |
| 10501                  | £13          | 1          |               | 65.1   | • 41  | •51            |
| 10500                  | t. T 3       | <u> </u>   | 07.2          | 00.4   | • 6 6 | • t u          |
| 16466                  | <del></del>  |            | 64.11         | 64.6   | . 4.4 | • 44           |
| 16361                  | 111          |            | tid           | 63.6   | • 24  | •41            |
| 10301                  | cT1          | 1          | 70.1          | 61.0   | • • 9 | ١٤ •           |
|                        |              | 1          | 74.9          | 14.4   | • 15  | • 4 4          |
| 16266                  | <del></del>  | 1          | rt.1          | 71.00  | • 6.5 | • (i M         |

#### PERSONNEL NOISE EXPOSERE AND IMPACT

### FF-1094 USS PHARRIS

|   | GRADE                    | GRADE           | Nu. Uf                       | _            | LEVEL                 |              | NU15: UU5:     |
|---|--------------------------|-----------------|------------------------------|--------------|-----------------------|--------------|----------------|
|   | CODE                     | DESCRIPTION     | PEKS.                        | LIERN -      | <b>4.</b> i.          | MCAN         | n.i.           |
|   | 50300                    | EN1             | 1                            | MANA         | MAK                   |              | 0.00           |
|   | 40700                    | EMFA            | 1                            | 73.5         | 74.1                  | .10          | .11            |
|   | - <del>4050</del> 1      | <del></del>     |                              | - KINGK      | ***                   | • tit        | <b>∵.</b> 09   |
|   | 40560                    | EM3             | 1                            | 14.7         | 12.0                  | • 12         | • i 4          |
|   | 40400                    | ŁM2             | 1                            | 11.0         | 70.4                  | • 15         | .26            |
| - |                          | . <del></del> , | · · •                        | 06.4         | "02"• <b>4</b>        | . ±5         | • 37           |
|   | 20602                    | h#FN            | 1                            | 61.0         | とりょう                  | • b c        | . 41           |
|   | 20611                    | MMEN            | ì                            | 43.0         | 83.€                  | • 38         | • 36           |
|   | 2# <del>ef4</del>        | <del></del>     | · · · · <del>- 1</del> - · · | 75.2         | 70.6                  | • Z Ü        | • < 0          |
|   | 20506                    | mm3             | i                            | 67.3         | د. 1ن                 | • : 9        | .64            |
|   | 20505                    | rm3             | 4                            | merit        | AMERICA               | • 06         | o • 0 €        |
|   | 20564                    | <del>h</del> #3 |                              | e4.1         | 67.1                  | • 64         | * 54           |
|   | 20563                    | nn3             | 1                            | 04.5         | 64.3                  | • 45         | .45            |
|   | 20502                    | n M 3           | 1                            | 07.3         | 61.4                  | • t. G       | .70            |
|   | 26501                    |                 | · ** **                      | <b>MALKE</b> | Statut M.             | • <b>v</b> € | <b>∵.</b> 0€   |
|   | 2いちひひ                    | mm 3            | 1                            | 家女家族         | MACHIE                | • 6 (        | <b>0 -</b> 0 € |
|   | 20401                    | r#2             | 1                            | フィ・リ         | 40 . L                | 1.40         | A o C fi       |
|   | ~ <del>~~2640</del> 66~~ |                 |                              | 64.1         | 07.1                  | 304          | • 57           |
|   | 20300                    | n#1             | À                            | 74.1         | 74                    | .11          | • 1 i          |
|   | 10802                    | <b>BTF</b> K    | 1                            | <b>*1.</b> 0 | 71.0                  | 1.15         | よるよう           |
|   | 16801                    | <del></del>     |                              | ₽1.5         | ₹0.5                  | . / 1        | • 0 (          |
|   | 16866                    | BTFK            | ì                            | <b>54.4</b>  | 67.4                  | . 46         | .42            |
|   | 10005                    | ETFN            | (                            | c 5 • 7      | 4 1                   | • t ɔ        | 1067           |
|   | 16-604                   | <del></del>     |                              | +7.4         | 67.5                  | 75           | .10            |
|   | 10603                    | BTFN            | 1                            | 66.35        | 80 · 3                | •€€          | • 60           |
|   | 16665                    | LTFN            | 1                            | 00.9         | 80.4                  | • 86         | • et           |
|   | 10061                    |                 |                              | 7114         | -41.4                 | ierl         | 1.61           |
|   | 10000                    | ETFN            | 1                            | 10.7         | 65.7                  | • 04         | • t 4          |
|   | 16502                    | 5 T 3           | 1                            | 65.7         | u5.9                  | • 57         | •57            |
|   | 10561                    | + 1 3           |                              |              | ~ ~ <del>©</del> ೮.65 |              | • 6 5          |
|   | 10566                    | tT3             | 4                            | ANAM         | Antara                | • 66         | 0.60           |
|   | 10401                    | £ <b>T</b> Z    | 1                            | 67.1         | とり・よ                  | •51          | •51            |
|   | 10.000                   |                 |                              |              | ··· 41.7              | ·· • ±1      | . 3 4          |
|   | 1 - 3 ( 1                | υTi             | 1                            | 75.6         | 76.9                  | -14          |                |
|   | 46.6                     | i 71            | 1                            | 66.4         | 71.1                  | . 05         | .67            |

#### PERSONNEL NUISE EXPOSURE AND IMPACT

ThreSHULL Level = 60.0 L.A.
b=nk PERMISSICLE Level = 90.0 LEA
---ERUMANGE H#1E - - - - = 5 DEA

#### FF-1085 USS BEARY

| GRADE           | GRADE                                  | NL. Ct                                |               | LtV.L                |                      | NC15c 505c                 |
|-----------------|----------------------------------------|---------------------------------------|---------------|----------------------|----------------------|----------------------------|
| CODE            | DESCRIPTION                            | PEKS.                                 | FEAN          | M. L.                | mu Ai-               | F.U.                       |
| 60361           | EHS                                    | 1                                     | 91.9          | 40.1                 | 1.51                 | د د د د                    |
| 60360           | ENS                                    | 1                                     | c 7.5         | £1.5                 | • 1)                 | • <b>7</b> 0               |
| 60266 ···       |                                        |                                       | 14.0          | 71.t                 | • i <                | .15                        |
| 60100           | LT                                     | ì                                     | 23.2          | むる・と                 | . 24                 | ٠ ١٧                       |
| <b>5</b> 0600   | ERFN                                   | 1                                     | <b>ANAX</b>   | <b>SAPAN</b>         | • U.C                | C • 2 2                    |
|                 | · EN3                                  | 1 ·                                   | 44.5          | 40.1                 | i.tl                 | e • > 5                    |
| 50300           | ENI                                    | 1                                     | 40.5          | 163.0                | 3.67                 | 4.35                       |
| 46600           | EMFN                                   | 1                                     | ***           | <b>Statistic</b>     | <ul><li>€9</li></ul> | 0.00                       |
| 40566           | ······································ | 1                                     | - せちゅち        | <del>-1+</del> € • € | • • •                | 4 . 43.42                  |
| 40400           | Er2                                    | 1                                     | 04.9          | 7-06                 | . 6 /                | 4.36                       |
| 30200           | F &                                    | 1                                     | KAKA          | <b>State of</b>      | • t. C               | <b>↓ •</b> ′. ′.           |
| 36160           | - <b>+ A</b>                           | <u>1</u>                              | 64.0          | かひ・1                 | •47                  | • i 1                      |
| 20901           | nr -                                   | 1                                     | C 3 . Y       | 6 4                  | • 43                 | د 4 ه                      |
| 26960           | r.e.                                   | 1                                     | 34.9          | とフ・サ                 | . 99                 | • 4 1                      |
| 20760           | ·· ***                                 | 1                                     | CO . !!       | € C • (*)            | • 57                 | .57                        |
| 21002           | r m F N                                | 1                                     | BANK          | RH-XX                | • 46                 | 0.00                       |
| 20601           | p.P.FA                                 | 1                                     | 44.3          | 4406                 | 1.79                 | 1.74                       |
| 50000 -         | Pr#F in                                | · L                                   | 01.0          | *1.5                 | •1 è                 | .16                        |
| 2(563           | n#3                                    | <u> </u>                              | c 3.4         | 03.4                 | - 43                 | • 4 5                      |
| 20502           | MM3                                    | 1                                     | 64.4          | 67.4                 | . 44                 | • 4 4                      |
| <b>5</b> 0201 - | - AM3                                  | · · · · · · · · · · · · · · · · · · · | 4-0.4         | £6.6                 | .57                  | .57                        |
| 26500           | r #3                                   | 1                                     | 6: • 4        | C 5 . 9              | ·ct                  | • 36                       |
| 20462           | r.r.2                                  | i.                                    | 77.7          | 162.1                | 2.42                 | 5 . 34                     |
| 24.461          |                                        | <u> </u>                              | e 5 . 5       | c ( )                | • 40                 | • © 1                      |
| 21.460          | mm2                                    | 1                                     | 90.0          | 90 au                | 1.51                 | 4.91                       |
| 20200           | mmc                                    | 1                                     | :0.2          | 60.6                 | • 7 v                | .70                        |
| 16961 -         | <u> ∌ </u>                             | · · · · · · · · · · · · · · · · · · · | 埃夫斯森          | anpra                | • 6 6                | 6.00                       |
| 10960           | <u>. I</u>                             | 1                                     | 4 0 0 9       | . 2.04               | • c t                | • 26                       |
| 10700           | DTFA                                   | 1                                     | <b>STREET</b> | <b>SALANA</b>        | • ( (                | 10 <b>0 C C</b>            |
|                 | ·                                      |                                       | ***           | <b>State</b>         | • • 6                | <b>€</b> • € <sup>11</sup> |
| 10505           | 6 T a                                  | 1                                     | 14.7          | 63                   | . 24                 | • £ t/                     |
| 16504           | e T 3                                  | 1                                     | 76.6          | 41.06                | 1.00                 | 4.00                       |
| 10 503 ··· -    |                                        |                                       | 02.9          | 60.5                 | 7                    | • 62                       |
| 10562           | 613                                    | 1                                     | 66.9          | ٠ 4                  | . 30                 | 3 <b>L</b> .               |
| 10501           | 6 T 3                                  | 1                                     | 20.9          | <b>52.9</b>          | • 60                 | • Ho                       |
| 16560           |                                        |                                       | ··· 4· 4 · 5  | 04.3                 | . 45                 | • 45                       |

#### PERSONNEL NUISE EXPOSURE AND IMPACT

| THRESHULD LEVEL  |       | = | BULL DUA  |
|------------------|-------|---|-----------|
| b-hr PERMISSIELL | LEVEL | • | YULL DOA  |
|                  |       | = | 5 1. + 2. |

### FF-1085 USS BEARY

| GRADE<br>CODE  | GRADE<br>DESCRIPTION | NU. OF<br>PERS. | -    | UALLY N        | 4.6.<br>H.L. |
|----------------|----------------------|-----------------|------|----------------|--------------|
| 10301<br>10300 | £ 11<br>511          | =               | 67.4 | • 2 6<br>• 7 5 | • 45<br>•75  |

### PERSONNEL NUISE EXPEDIENT AND IMPACT

# FF-1092 USS HART

| GRADE   | GRADE                                  | NL. UF                              |               | LLVIL   | -               | N 15: LUST |
|---------|----------------------------------------|-------------------------------------|---------------|---------|-----------------|------------|
| CODE    | DESCRIPTION                            | Pticso                              | HE AN         | n.L.    | MEAL            | keue       |
| 60200   | LTJG                                   | 1                                   | 17.5          | 72.6    | .1"             | •21        |
| 21000   | MMCS                                   | 1                                   | 14.0          | 74.3    | • <b>6</b> 6    | .11        |
| 20000   |                                        | 1                                   | ₹ <b>1.</b> 3 | 85 • E  | • 64            | . 7 4      |
| 20700   | MMFA                                   | 1                                   | 73.7          | 47.0    | 1.63            | a e e e    |
| 20602   | mmEN .                                 | 1                                   | را ه 🕽 نا     | 6006    | ت <b>د .</b>    | .:1        |
| 26661   | ···                                    | 1                                   | 10.5          | 10.4    | .10             | .10        |
| 20600   | MMFN                                   | 1                                   | 64.6          | 46.1    | . 47            | 1.34       |
| 20564   | MMS                                    | 1                                   | ·2.2          | t- • 4  | . 54            | . 14       |
| - 20403 |                                        | · · · · · · · · · · · · · · · · · · | -70.U         | tt-2    | . 14            | · ct       |
| 20502   | nn3                                    | 1                                   | 67.0          | 65.6    | . 54            | .54        |
| 20501   | m#3                                    | 1                                   | ソニャン          | 4" . 4  | 1.44            | 6060       |
| 24.560  | ************************************** | 1 -                                 | ***           | 4044    | • • •           | \$ 6 C C   |
| 10605   | t TF1                                  | 1                                   | 13.4          | 10.5    | • 4 4           | • 4 4      |
| 10664   | : TFN                                  | 1                                   | ().4          | 51.Y    | . 57            | .51        |
| 10663   | +TFN ·                                 | ì                                   | 14.6          | 16.7    | 7               | • . ~      |
| 10602   | : This                                 | 1                                   | and all       |         | • <b>.</b> . (: | . • . •    |
| 10601   | t THN                                  | 1                                   | يا ۾ يا ت     | 61.00   | • 5 و           | • 5 5      |
| 16466   | 4. TF#                                 | - 1                                 | ・・・・・・・       | 1207    | .05             | • • •      |
| 10505   | ŁTŚ                                    | 1                                   | 13.5          | 75.7    | • 1             | . 14       |
| 16564   | 6T3                                    | 1                                   | 67.5          | 61.6    | . 12            | .12        |
| 14503   |                                        | · · · · · · · · · · · · · · · · · · | KANA          |         | • e.c.          | 9.60       |
| 1(562   | t T'3                                  | 1                                   | 67.4          | . ∵ • € | . 15            | • 6 6      |
| 10501   | JT3                                    | 1                                   | 01.           | 31.0    | • <b>6</b> c    | . P. C.    |
| 10500   |                                        | <b>1</b>                            | E4 . 4        | 60.0    | • > 0           | • 20       |
| 16466   | v12                                    | Ž                                   | RSAR          | AN-A-A- | • 0 C           | W. O.      |
| 10300   | LTI                                    | 1                                   | U5.4          | C > 0 7 | . 57            | .:1        |
| 16100   |                                        | · · ·                               | <b>₹0.</b> €  | 70.0    | .17             | • A h      |

#### PERSONNEL NUISE EXPUDURE AND IMPACT

#### FF-1081 USS AYLWIN

| DESCRIPTION   PLAN   N.C.   MLAN   N.C.   MLAN   N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GRADE             | GRADE                                            | Nu. GF   | ن۵۵۵۵ د      | LEVIL        | BAILY  | NUTSE EUSE   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------|----------|--------------|--------------|--------|--------------|
| DO   DO   DO   DO   DO   DO   DO   DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CODE              |                                                  | PERS.    | MEAN         | r.C.         | MEAN   | h.i.         |
| 00300   ENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60301             | ENS                                              | 1        | 75.9         | 17.5         | .14    | .10          |
| 60100         LT         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>60300</td> <td>ENS</td> <td>1</td> <td></td> <td></td> <td>. 24</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60300             | ENS                                              | 1        |              |              | . 24   |              |
| 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                  | · 1      | ···+>.1      | 47.1         | 1      |              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60166             | LT                                               | 1        | String to    | well w       |        | ن الله الله  |
| 40300 EM1 1 50.9 91.0 .05 1.1 206(4 MMFN 1 50.0 50.0 .70 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50600             | ENFH                                             | 1        | 03.4         | cc.t         | . a. C | د 5 .        |
| 20e(4)       MMFN       1       50.0       50.0       50.0       60.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0       67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>50</del> 568 | <b>EN3</b>                                       | 1 .      | - 4444       | 200          | • 46   | 6.00         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40300             | EM1                                              | 1        | 8c.9         | 41.0         | . 05   | 4.45         |
| 20002 MMFH 20000 MMFN 20000 MMFN 1 0007 0902 083 09 20000 MMFN 1 0007 0902 083 09 20002 MM3 1 0003 0000 09 20000 MM3 2 0000 0900 0900 094 09 20000 MM3 2 0000 MM3 2 0000 0900 0900 0900 09 20403 MM2 20403 MM2 20400 MM2 | 26664             | MMEN                                             | 1        | 83.0         | 60.0         | .70    | .16          |
| 20000 MMFN 1 00.7 09.6 093 094 20503 NM3 1 05.3 05.5 05.5 05.2 05.2 05.0 05.0 05.0 05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                                  | · 1      | 2406         | 87 . L       | . 64   | • 67         |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20002             | nmfr-                                            | ì        | 66.3         | <b>ピン・ン</b>  | . 34   | . 54         |
| 20503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0601             | MPFN                                             | 4        | o 7.7        | ن ن يا       | .73    | . 41         |
| 20502 MM3 2 05.0 05.0 054 05 20500 MM3 2 05.0 05.0 054 05 20500 MM3 2 05.0 05.0 05.0 05 20404 MM2 1 07.3 07.1 00 05 20402 MM2 1 07.0 07.0 07.0 07 20401 MM2 1 07.0 07.0 07.0 07 20400 MM2 1 07.0 07.0 07.0 07 20300 MM1 1 07.0 07.0 07.0 07 20300 MM1 1 07.0 07.0 07.0 07 10001 0764 1.34 1.34 1.34 1.34 1.34 1.35 10502 07.0 07.0 07.0 07.0 07.0 07.0 07.0 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2000             |                                                  | 1        | ·uc. 7       | 0402         | . 63   | <b>.</b> % ⊕ |
| 20501 MM3 2 e5.0 e5.0 .54 .55 20500 MM3 2 .05.0 E0.5 .6c .75 20404 MM2 1 E7.3 07.1 .6b .7 20403 - MM2 1 E1.0 02.7 .24 .5 20402 MM2 1 07.0 87.0 .72 .7 20401 MM2 1 8888 .00 .00 .5 20400 - MM2 1 07.0 07.0 .70 .50 20300 MM1 1 07.0 07.0 .72 .7 10601 ETFh 1 92.4 92.4 1.34 1.34 1.35 10502 ET3 2 05.0 00.5 .54 .60 10501 ET3 2 05.0 00.5 .54 .60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20503             | nk3                                              | 1        | 60.5         | <b>と</b> ン・3 | . 52   | •>4          |
| 20500       RMB       2       0500       600       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ろいかいろ             | nr3                                              | <i>c</i> | <b>ರ೭.</b> ತ | 65.5         | . 34   | .54          |
| 20404 MM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26561             | nn3                                              | 2        | 67.6         | とう。じ         | . 54   | . 54         |
| 20403 - RM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20500             | n#3                                              | £        | <b>∪</b> 5.5 | 60.5         | • 0 4  |              |
| 20402 MM2 1 67.0 87.0 .72 .7. 20401 MM2 1 886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20464             | nnz                                              | 1        | 17.5         | 0 1          | . 66   | • 5 5        |
| 20401       MM2       1       #### #### **** **** **** **** **** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26463             | <b></b>                                          | i        | 64.0         | o 7          | . 24   | • 34         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20402             | nM2                                              | 1        | 01.0         | 81.t         | • 72   | •1 <i>i</i>  |
| 20300 An1 1 0/00 0/00 0/00 0/00 1/00 1/00 1/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20401             | mm2                                              | 1        | 4444         | <b>TYPE</b>  | • 60   | ن کی وال     |
| 10001 ETFR 1 92.4 92.4 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20460             |                                                  | 1        | 03.0         | واوري        | • >0   | • 50         |
| 10500 - 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20300             | Par-1                                            | <b>A</b> | 61.0         | # 1 . t      | .12    | .76          |
| 10562 ET3 2 05.6 60.5 .54 .6. 10561 ET3 2 69.4 69.4 .91 .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10401             | eTfh                                             | i        | 74.4         | 44           | 4.54   | 1.34         |
| 10001 273 2 29.4 69.4 .91 .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10ecc             | - olf4                                           | s        | 46.00        | 41.4         | 1.41   | c • 1 t      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10562             | ET3                                              | 4        | 03.6         | 60 · 5       | . 54   | •6.          |
| 144.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | £13                                              | 4        | 64.4         | 67.4         | . 51   | .41          |
| - 10540 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 10500 -         | · · · · • T3 · · · · · · · · · · · · · · · · · · | . 2      | ن دن و در    | 00.0         | . > 7  | •51          |
| 10400 pT2 1 94.7 90.7 1.91 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10400             | sT2                                              | 1        | 44.7         | 46.7         | 1.91   | 4.25         |
| 10300 LT1 1 64.4 44.6 .44 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19300             | LT1                                              | 1        | 64.4         | 44.0         | . 44   | 4.40         |

#### PENSUNNEL NUISE EXPUSURE AND IMPAUT

THRESHULL LEVEL = 80.0 L.A 8-MR PERRISSIALE LEVEL = 90.0 L.A Exchange Rafe = 5 uch

#### FF-1097 USS MOINESTER

| GRADE CODE         GRADE DESCRIPTION         NL. UF PERS.         SUUND LEVEL DESILEY NUISC DUS.           604(0 LCD.         1 MARK MADE.         NL. AR MADE.         NL. AR MADE.           604(0 LCD.         1 MARK MADE.         NL. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION         PERS.         DEAN         No. 0.         MEAN         Hoc.           604(0         LCD         1         MARK         MARK         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60300       £NS       1       62.7       64.7       .37       .45         60400       £T       1       50.6       57.0       .03       .93         50400       £N1       1       74.9       74.9       .22       .12         30100       £N1       1       74.9       74.9       .22       .12         30100       £N       2       64.0       65.7       .44       .55         20701       MMFA       1       70.0       70.0       .21       .21         20701       MMFA       1       70.0       70.0       .22       .12         20700       MMFA       1       20.0       20.0       .21       .21         20004       MMFA       1       20.0       .25       .13       .16         20004       MMFA       1       20.0       .27       .13       .16         20004       MMFA       1       20.0       .27       .56       .73         20004       MMFA       1       20.0       .27       .56       .73         20004       MMFA       1       20.0       .27       .56       .27         20004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \$0400 EN2 1 244 444 .00 .00 .00 500 5000 EN1 1 7449 7449 .12 .12 .12 .12 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50:300       EN1       1       74.9       74.9       12       12         30:100       FN       2       64.0       65.7       44       55         20:701       FN       2       64.0       64.0       64.0       64.0         20:701       FN       2       64.0       70.0       70.0       72       72         20:702       FN       3       70.0       70.0       72       72       72         20:703       FN       3       75.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0       70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30100 FN 20701 MMFA 1 70.0 70.0 .21 .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30100 FN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 207(1 mmFA 1 70.0 70.0 .211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20000 mmth 1 2000 7009 013 010 020 020 020 020 020 020 020 020 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20004 - MMFN 1 70.0 70.9 .13 .10 .20 .20 .20 .20 .41 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20003 RMFN 1 8888 000 000 0000 0000 2000 2000 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20 0 0 1     MPF M     1     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20c01 MFFH 1 20.9 on.9 ozc ozn zuoll mmfh 2 czo4 20c ozo ozn ozn zuoll mmfh 2 czo6 czo ozn ozn ozn ozn zuoll mms 1 czo6 czo ozn ozn ozn ozn zuoln zuoln mms 1 czo6 zzo ozn ozn ozn ozn ozn ozn zuoln zuoln mms 1 czo6 zzo zuoln zuol |
| 20000     mmfh     2 02.4 83.5 .35 .41       20506     mm3     1 03.0 0.3 .57 .00      20505    mm3     1 03.4 83.4 .30 .41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20506 mm3 1 cc-0 co-0 -07 -00<br>20505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20506 PR3 1 6560 6563 657 666<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20:04 BM3 1 01.4 83.4 .50 .40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20563 MM3 1 01.0 02.0 .29 .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ot. dt. 620 desp EMM - 50 <del>005</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20001 MP3 1 00.5 00.5 .5c .6c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20500 RM3 1 77.4 Scat .19 .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 26461 - MM2 1 2646 1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20400 642 1 61.7 63.7 .32 .42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26300 MM1 1 85.3 87.1 .65 .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26200 MMC 1 9001 9005 1001 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10601 rTFF 1 15.7 70.00 .14 .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10600 BTFK 1 66.1 96.2 .56 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 107CO BTF4 1 /5.4 /5.4 .14 .14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10602 ETFN 1 /5.4 70.8 .13 .10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16001 oc. c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1666 BTFN 3 65.6 96.9 .85 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10503 673 1 93.4 93.4 1.61 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### PERSUNNEL NUISE EXPUSER. AND IPPACT

#### FF-1097 USS MOINESTER

| GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. ut<br>Pins. | ME414   | LtveL<br>Wolo | DATEY<br>BE AN | NULD: 515- |
|---------------|----------------------|-----------------|---------|---------------|----------------|------------|
| 10501         | ьТЗ                  | 4               |         | 46.4          | 1.35           | 1.40       |
| 10500         | bT3                  | Ž.              | * 444   | <del>-</del>  | • <b>U</b> U   | 9.00       |
| 16400         | <del></del>          |                 | e t · i | #5.3          | . 64           | .74        |
| 10200         | ьтс                  | 1               | ***     | ***           | • 0 0          | 0.00       |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT

#### FF-1075 USS TRIPPE

| GRADE<br>CODE | GRADE        | NL. UF   | SEUML     | LEVEL     | DALLY        | אט אלא טלאנא |
|---------------|--------------|----------|-----------|-----------|--------------|--------------|
|               | DESCRIPTION  | PEKS.    | he an     | n. L.     | NL AT        | r.L.         |
| 30300         | €₹           | 1        | 14.0      | 74.0      | • 4 6        | • ( )        |
| 20760         | MMFA         | 1        | c4.(      | نا ۾ ٻه ن | . 44         | • 4 4        |
| 20642         | ##Fh = · · · | 1        | C4.1      | 64 · U    | . 44         | . 44         |
| 26601         | P.MF.N       | 1        | 0.60      | 61.6      | . 45         | . 95         |
| 20660         | nmen         | 1        | c i . 4   | 41.7      | • 46         | 1.20         |
| 20560         | ##3          | ±.       | وا د ل وا | 46.4      | 1.14         | 1.14         |
| 20400         | nmi          | 1        | د و د ن   | 65.1      | . 54         | .51          |
| 10706         | bTf#         | 1        | 90.5      | 73.0      | 1.07         | 1.51         |
| -10601        |              | 1        | 4004      | 40.4      | 1.14         | 1.14         |
| 16660         | LTFN         | 1        | ***       | SHAR.     | • <b>L</b> C | <b>0.6</b> 0 |
| 10561         | £13          | 1        | ***       | ****      | • ∪ ℃        |              |
| <b>4</b> 65€0 | · vI3        | 1        | €0.0      | ee.u      | . 76         | . 70         |
| 10461         | uT2          | 1        | 67.5      | 9000      | .7.          | 4            |
| 16460         | £ <b>1</b> 2 | 4        | ***       | ***       | . 00         |              |
| 10366         | ell ·        | <b>A</b> | ***       | **        | • 04:        | v.•9€        |

### APPENDIX F

Grade Average Noise Exposure Results
For Each Ship Using Noise Levels
Measured at Individual Locations

| Report | <b>4735</b> |
|--------|-------------|
|--------|-------------|

Bolt Beranek and Newman, Inc.

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

Threshuld Level = 50.0 00A
8-mk Pekmissible Level = 90.0 00A
Exchange Rate - 5-00A

# FF-1083 USS COOK

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NL. DF<br>PLKS. | NEAN<br>MEAN | LEVEL<br>S.O. | DEILY | NUISE 0051<br>S.D. |
|---------------|----------------------|-----------------|--------------|---------------|-------|--------------------|
| 263           | KHI                  | 2               | £5.5         | 6.3           | .74   | •59                |
| 107           | ŁTFA                 | 3               | 60.4         | 4.6           | . 64  | • 4 7              |
|               |                      |                 | 67.4         | 3.5           | >0    | .45                |
| 205           | P.F.3                | ė .             | 04.3         | 0.2           | . 54  | .41                |
| 106           | ETFN                 | 3               | 6.60         | 3.3           | .45   | .15                |
| <b>1</b> 65   | <del></del>          | <u></u>         | 82.9         | 6.0           |       | ⊎ • 00             |
| 207           | MMFA                 | 1               | 78.4         | Ü . U         | • 42  |                    |
| 204           | MF2                  | 2               | 70.1         | 0.6           | .26   | .19                |
|               |                      |                 | 74.5         | 7.8           | 15    | .14                |
| 602           | £TJ6                 | 1               | 11.0         | u . U         | . 67  | 0.00               |

## PERSUNNEL NUISE EXPUSURE AND IMPAUT AVERAGES

THRESHULD LEVEL = 50.0 DEA
5-MK PERMISSIELE LEVEL = 90.0 DEA
Extrance kate = 5 DEA

FF-1065 USS STEIN

|       | GRADE<br>CODE  | GRADE<br>DESCRIPTION | NU. OF<br>PERS. | SUUND<br>NEAN | LEVEL<br>S.U.    | DAILY | 2.0.<br>No125 8625 |
|-------|----------------|----------------------|-----------------|---------------|------------------|-------|--------------------|
|       | 206            | nmen                 | 3               | 91.7          | ۷.5              | 1.32  |                    |
|       | 203            | nM1                  | ا و             | 00.7          | 7.2              | • 03  | .71                |
|       | <del>165</del> |                      |                 | 04.1          | 4.5              | - 71  | .70                |
|       | 204            | MTZ                  | 3               | 40.2          | 1.9              | . 69  | ار نا •            |
|       | 10t            | bTFN                 | 3               | 64.3          | ć.l              | . 65  | •54                |
| · · - | <del></del>    | <del></del>          |                 | 04.1          | v • 7            | . 62  | • 7 7              |
|       | 104            | ET2                  | 1               | <b>05.0</b>   | U.O              | .50   | 0.00               |
|       | 102            | aTC .                | 1               | 64.B          | U . U            | . 44  | 0.60               |
|       | ite7           | tff>                 |                 | 04.1          | 4.5              |       | .it                |
|       | 3C1            | FN                   | 1               | 62.3          | 0.0              | . 35  | 0.30               |
|       | 103            | e <b>T</b> 1         | 1               | £.00          | 6.0              | • 4 6 | v • 0 C            |
|       | 362            | + A                  | 2               | 82.0          | 0.6              | • 15  | • 6 3              |
|       | 212            | ari                  | 1               | ****          | <b>HOUSE</b>     | .10   | ()                 |
|       | 563            | £81                  | ì               | 4444          | <del>44.44</del> | • Ü(  | 6.00               |
|       | ナ(・)           |                      | <b>3</b> .      | ***           | ***              |       | 0.00               |

### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

THRESHULD ETVIL # 50.0 LSA 6-MK PERMISSIBLE LEVEL # 90.0 CDA EXCHANGE RATE = 5 UCA

#### FF-1084 USS CANDLESS

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. OF<br>PERS. | SUUNU<br>MEAN | LEVEL<br>S.U. | DAILY | NC 152 0050   |
|---------------|----------------------|-----------------|---------------|---------------|-------|---------------|
| 503           | EN1                  | 1               | 100.5         | 0.0           | 4.28  | 0.06          |
| 505           | EN3                  | 2               | 45.4          | • 7           | 2.28  | • 23          |
|               | -trc                 |                 | £4.3          | U - Ü         | 40    | <b>v.</b> 96  |
| 207           | MMFA                 | 1               | c7.1          | 0.0           | . c 7 | 0.00          |
| 107           | bTFA                 | 2               | 65.4          | 2.7           | .55   | .20           |
| 265           |                      | <b>.</b>        | 46.4          | 0.4           | 44    | .27           |
| 20€           | MMEN                 | 4               | ბე•I          | 4.6           | .44   | • 35          |
| 106           | υTFN                 | 7               | 62.4          | 3.0           | . 19  | .24           |
|               | <del></del>          |                 | 61.1          | 0.0           | 4     | - <b>€.0€</b> |
| 165           | bT3                  | 4               | <b>60.</b> 0  | 4.2           | . 47  | .15           |
| 602           | LTJC                 | ا و             | 10.5          | <b>b</b> - 1  | . 40  | ·ic           |
|               |                      |                 | 77.1          | 4.6           |       | . 24          |
| 204           | nn2                  | 2 '             | 01.0          | 0.0           | .14   | 3             |
| 4(4)4         | L M 2                | 1               | 74.9          | 0.0           | .12   | ور الم        |
| 163           | oli                  | 1 .             | 14.5          | U . O         |       | Car 1         |
| 3(3           | FK                   | 1               | 74.6          | Ú • O         | . 11  | 0.60          |
| 601           | LT                   | 1               | 72.1          | 0.0           |       | U.U.          |
|               | <b>.</b> 116         |                 | 16.0          | 0.40          | to to | . 1 4         |
| 4(5           | FW3                  | ì               | 20.4          | U • U         | 7     | 0.00          |

### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

### FF-1090 USS AINSWORTH

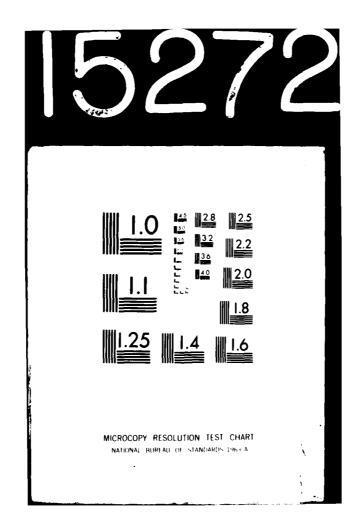
| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PLNS.                        | SUUNU<br>MEAN | LEVEL<br>S.D. | DALLY  | Nulse Ebse    |
|---------------|----------------------|----------------------------------------|---------------|---------------|--------|---------------|
| 6(1           | LT                   | 1                                      | 43.6          | 0.0           | 1.05   | 0.50          |
| <b>∠</b> €5   | mm3                  | 3                                      | 40.2          | 3.1           | 1.08   | • 4 4         |
|               |                      | —————————————————————————————————————— | 63.6          | 5.1           | . 44   | • 47          |
| 406           | EMFN                 | ć                                      | 63.6          | 4.0           | . 43   | •1¢           |
| 116           | ETEN                 | 1                                      | 62.7          | U . i         | . 36   | 0.00          |
| 266           | - <del>A</del> KFN   | ·                                      | 6.Ua          | 6.5           | . 36   | • 6 1         |
| 104           | bT2                  | i                                      | 62.1          | 0.0           | دُ د ٠ | <b>L.L</b> O  |
| 105           | 613                  | 1                                      | 01.6          | 0.0           | . 1    | 0.60          |
|               | <del></del>          |                                        | 74.9          | 3.5           | 7      | • ندف         |
| 405           | £M3                  | 1                                      | 0.00          | 0.6           | • 42   | J. Ut         |
| 162           | rTC                  | 1                                      | 74.7          | 0.0           | • 44   | 5.00          |
| 207           | AMFA                 | 1                                      | 4444          | · ####        | .00    | y <b>,</b> ⊕6 |

| Report | 47 | 35 |
|--------|----|----|
|--------|----|----|

Bolt Beranek and Newman, Inc.

#### PERSUNNEL NUISE EXPUSURE AND IMPAUT AVERAGES

THRESHULD LEVEL = 60.0 JEA 8-HR PERMISSIBLE LEVEL = 90.0 JEA EXCHANGE FATE


#### FF-1091 USS MILLER

|                                         | GRADE<br>CODE   | GRADE<br>DESCRIPTION | NÚ. ÚF<br>PEKS. | SUUND<br>MÉAN | S.U.         | EAILY<br>MC AH | Nuls= 0us=     |
|-----------------------------------------|-----------------|----------------------|-----------------|---------------|--------------|----------------|----------------|
|                                         | 204             | Hm2                  | 2               | 41.7          | • 3          | 17             | . 65           |
|                                         | 206             | MMFN                 | 2               | 57.4          | 0 • 4        | • 04           | ·ct            |
| · · · · <del>- · · - · - · - · - </del> | <del>1-66</del> |                      | <del></del>     | 80.8          | 2.5          |                | . 64           |
|                                         | 203             | nml                  | 1               | 66.4          | U . O        | • 65           | <b>U •</b> U U |
|                                         | 107             | bTFA                 | 3               | 00.3          | 1.0          | .61            | -10            |
|                                         | 105             |                      |                 | 05.6          | 4.4          |                | .17            |
|                                         | 104             | BT2                  | 3               | 81.1          | 0.0          | . 49           | 0.16           |
|                                         | 103             | ŁTI                  | 2               | 76.5          | 6.2          | .16            | • 65           |
| ·                                       |                 |                      |                 | 16.0          | <b>i</b> . 0 | 14             | <b>₹.</b> €6   |
|                                         | 601             | LT                   | 1               | 74.4          | 0.0          | •11            | <b>i.</b> vi   |
|                                         | 102             | <b>ETC</b>           | 1               | 60.1          | 0.0          | •(5            | ( • <b>(</b> ( |
|                                         | 262             | -MMC                 | 1               | ***           | <b>8842</b>  | • 00           | i. • (c) (c)   |
|                                         | 403             | er1                  | 1               | ***           | MAAA         | .06            | L.U(           |

BOLT BERANEK AND NEWMAN INC CANOGA PARK CA

F/G 6/19
DEVELOPMENT AND VALIDATION OF SHIPBOARD NOISE EXPOSURE DATA ACG--ETC(U)
NOV 81 B A KUGLER, C H HANSEN, A G PIERSOL

N00014-78-C-0408
BBN-4735 AD-A115 272 UNCLASSIFIED 3 - 4



### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

THRE SHULD LEVEL # 80.0 UDA 6-HR PERMISSIBLE LEVEL # 90.0 UDA EXCHANGE RATE # 5 UDA

| FF-1097 | 7179 | MOINESTER |  |
|---------|------|-----------|--|
| FF-109/ | บออ  | MOTMEDIEU |  |

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NÚ. ÚF<br>Peks. | S DUNU<br>MEAN | S.U.        | DAILY  | Nulse 005.<br>5.0. |
|---------------|----------------------|-----------------|----------------|-------------|--------|--------------------|
| 102           | 6TC                  | 1               | 40.2           | ŭ. 0        | د٠ ١٥  | 0.09               |
| 163           | 6 <b>T</b> 1         | 1               | 95.6           | 0.0         | . 2.73 | 0.00               |
| <u>}+</u> +6  |                      |                 | 40.2           | 0.5         | 1.36   | • 51:              |
| 165           | 6T3                  | 4               | 90.3           | 1.5         | 1.06   | • < 1              |
| 107           | ЬТFА                 | 1               | 50.l           | U . U       | .17    | 0.06               |
| 264           | <del></del>          | <u> </u>        | 68.l           | 0.0         |        | ಳ •66              |
| 205           | m#3                  | 5               | 62.3           | 7.3         | • 4b   | -41                |
| 202           | MMC                  | 1               | 64.3           | 0.0         | . 45   | <b>₩.</b> €₩       |
| 463           |                      |                 | £3.2           | 0.0         | 39     | 6.00               |
| 207           | MMFA                 | 3               | 60.6           | 0.3         | . 38   | . 47               |
| 104           | ET2                  | 2               | 06.0           | U . C       | بے ہ   | -41                |
| 4(:4          | - ene                |                 | 61.0           | <b>∂.</b> 0 | . 29   | € • 6 €            |
| 405           | LH3                  | 1               | 76.9           | Ú . Ú       | .16    | 4.60               |
| 203           | PB1                  | i               | 44.44          | ***         | • L O  | i.36               |

## PERSONNEL NOISE EXPUSURE AND IMPACT AVERAGES

| FF-1094 | 7175 | PHARRIS |
|---------|------|---------|
| 11-1027 | 000  | LUNULIS |

|               |                                                           |                                                                                                                              | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GRADE<br>CODE | GRADE<br>DESCRIPTION                                      | NU. UF<br>PERS.                                                                                                              | SOUND<br>MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S.U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DALLY<br>ME AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NUISE 005E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 264           | mm2                                                       | 2                                                                                                                            | 59.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108           | BTFK                                                      | 3                                                                                                                            | 64.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • ८८                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                           | <del></del>                                                                                                                  | 55.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 266           | MMEN                                                      | 3                                                                                                                            | 83.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 104           | ET2                                                       | Ž                                                                                                                            | 03.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • i 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 301           |                                                           |                                                                                                                              | 62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 205           | nr3                                                       | Ľ                                                                                                                            | 67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۷.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 105           | ьт3                                                       | 4                                                                                                                            | 87.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 404           | <del></del>                                               | 1                                                                                                                            | 77.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 263           | nH1                                                       | 1                                                                                                                            | 74.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 407           | EMFA                                                      | $ar{f 1}$                                                                                                                    | 73.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ŧ = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 163           | e11                                                       |                                                                                                                              | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 465           | E۲3                                                       |                                                                                                                              | 74.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . U d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>う</b> じょ   | £M1                                                       | 1                                                                                                                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | CODE  204 108 106 206 104 301 205 105 404 203 407 103 405 | CODE DESCRIPTION  264 MM2 108 BTFK 166 ETFH 266 MMFN 164 ET2 301 FN 205 MM3 165 BT3 404 EM2 263 MM1 467 EMFA 163 ET1 465 EF3 | CODE         DESCRIPTION         PERS.           264         MM2         2           108         BTFK         3           166         ETFH         5           266         MMFN         3           1C4         ET2         2           301         FN         1           205         MM3         8           1C5         bT3         4           404         EM2         1           2C3         MM1         1           467         EMFA         1           1G3         ET1         2           4C5         EP3         2 | CODE         DESCRIPTION         PEAS.         MEAN           204         MM2         2         59.6           108         BTFK         3         59.3           106         ETFH         5         58.6           206         MMFN         3         83.4           104         ET2         2         53.4           205         MM3         8         57.0           105         5T3         4         57.1           404         EM2         1         77.8           203         MM1         1         74.1           407         EMFA         1         73.5           103         ET1         2         72.0           405         EM5         2         74.7 | CODE         DESCRIPTION         PENS.         MEAN         S.U.           204         MM2         2         b9.6         .6           108         b1FK         3         b9.3         1.8           106         b7FK         3         b3.6         1.4           206         MFFN         3         b3.6         0.4           104         b12         2         b3.4         2.4           301         FN         1         b2.4         0.0           205         MM3         8         b7.0         2.0           105         bT3         4         b7.1         1.7           404         bM2         1         77.8         0.0           203         MM1         1         74.1         0.0           467         bFF         1         73.5         0.0           103         c71         2         72.0         0.1           405         bF3         2         74.7         0.0 | CODE         DESCRIPTION         PEAS.         MEAN         S.U.         MEAN           204         MM2         2         59.6         .6         .94           108         BTFK         3         59.3         1.8         .93           106         ETFH         6         88.6         1.4         .63           206         MFFN         3         83.4         5.4         .4           104         ETZ         2         53.4         2.4         .41           301         FN         1         \$2.4         0.0         .35           205         MM3         8         57.0         2.0         .34           105         5T3         4         57.1         1.7         .34           404         EM2         1         77.8         0.0         .16           203         MM1         1         74.1         0.0         .11           407         EMFA         1         73.5         0.0         .10           165         EF3         2         74.7         0.0         .00 |

#### PERSONNEL NUISE EXPOSURE AND IMPACT AVERAGES

The second secon

THRESHULD LEVEL = 50.0 DER 8-HR PERHISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE. = 5 DDA

#### FF-1085 USS BEARY

|           | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PEKS. | SÜUNU<br>MÉAN | PEAET        | GAILY<br>MEAR | Nulse Eus:     |
|-----------|---------------|----------------------|-----------------|---------------|--------------|---------------|----------------|
|           | 503           | ŁN1                  | 1               | 40.5          | 0.0          | 3.27          | 0.60           |
|           | 505           | EN3                  | 1               | 94.3          | 0.0          | 1.01          | 0.00           |
|           | 204           |                      | j               | 91.1          | b • 2        | 1.7e          | 1.56           |
|           | 603           | FNS                  | 2               | 65.7          | 3.4          | 1.61          | .43            |
|           | 404           | EM2                  | 1               | £9.0          | 0.0          | . 67          | 0.00           |
| <b></b> . |               |                      | 3               | 90.9          | 4.7          | 84            | •4 <u>0</u>    |
|           | 405           | Em3                  | 1               | 60.6          | 0.0          | . 62          | 0.663          |
|           | . 202         | MMC                  | 1               | 60.2          | Û • Ü        | . 70          | 0.00           |
|           | 265           | <del></del>          |                 | 07.2          | 2.7          |               |                |
|           | 209           | hn                   | 2               | 80.9          | 4.2          | .71           | .45            |
|           | 103           | b <b>T</b> 1         | 2 '             | 67.0          | 1.3          | . 67          | •14            |
|           | 267           | . ARFA .             | - 1 -           | 00.0          | Ú . Ú        | .57           | <b>₩ . U</b> ( |
|           | 105           | <b>εΤ</b> 3          | ť               | 64.9          | 4.1          | • >6          | دد .           |
|           | 361           | FN                   | 1 ,             | 04.5          | <b>U .</b> C | .47           | t • J€         |
|           | <u></u>       |                      |                 | 68.4          | 0.0          | 43            | .ti            |
|           | 601           | LT                   | 1               | 2.60          | 0.0          | . 39          | 6.60           |
|           | 602           | LTJG                 | 1               | 74.0          | <b>6</b> € € | • 12          | 6.00           |
|           | 106           | LIFA                 |                 | <b>#4.46</b>  | way.         |               | <b>0.00</b>    |
|           | 107           | bTFA                 | 1               | 4.049         | 4444         | .00           | 0.00           |
|           | 302           | FA                   | <u> 1</u>       | #47 K         | 4444         | .00           | 0.00           |
|           | 466           | MFH                  |                 | 4446          | 4446         |               | 0.00           |
|           | 506           | ENFN                 | ī               | ***           | -            | .00           | 0.00           |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

#### FF-1092 USS HART

| GRADE<br>CODE  | GRADE<br>DESCRIPTION | NU. OF<br>PERS.                               | SOUND<br>NÉAN                                                                | Z.n.                                                 | ne an                                          | Nu15E 005i                                                           |
|----------------|----------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|
| 207<br>208<br> | MMFA MMFK            | 1 1 5 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 93.5<br>87.3<br>80.9<br>84.6<br>82.1<br>84.2<br>76.0<br>78.0<br>77.5<br>72.0 | 0.0<br>0.0<br>6.1<br>6.2<br>6.1<br>6.3<br>6.0<br>0.0 | 1.63<br>.69<br>.57<br>.50<br>.45<br>.45<br>.19 | 0.06<br>0.06<br>0.00<br>0.55<br>0.44<br>0.33<br>0.00<br>0.00<br>0.00 |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

THRESHULD LEVEL = 80.0 DBA 8-HR PERMISSIBLE LEVEL = 90.0 DBA EXCHANGE RATE - 5 DEA

### FF-1081 USS AYLWIN

|             | GRADE<br>CODE   | GRADE<br>DESCRIPTION | NU. GF<br>Pers. | SOUNU<br>Mè an | S.D.  | DAILY<br>MLAN | Nulsc 6636    |
|-------------|-----------------|----------------------|-----------------|----------------|-------|---------------|---------------|
|             | 104             | LT2                  | 1               | 94.7           | U.O   | 1.91          | 0.00          |
|             | 106             | ETFN                 | Ž               | 46.4           | • 1   | 1.40          | •04           |
|             | <del>1</del> 63 |                      |                 | 84.4           | 0.0   | 49            | 6.66          |
|             | 463             | EM1                  | 1               | u8.9           | 0.0   | . 05          | <b></b> () û  |
|             | 263             | nhl                  | 1               | 67.6           | U.U   | .72           | りゃじじ          |
|             |                 |                      | •               | 67.5           | ć • غ | 71            | .14           |
|             | 105             | <b>6T</b> 3          | ŧ               | 67.0           | 1.9   | • 6 6         | .17           |
|             | 205             | nh3                  | 7               | 07.4           | 2.0   | . 56          | .14           |
| <del></del> |                 |                      |                 | 02.1           | U.O   | · · > 1       | v∙€ú          |
|             | 204             | mn2                  | 5               | 92.5           | 3.0   | . 44          | . j C         |
|             | 500             | ENFR                 | 1               | 03.4           | U • U | . 40          | 6.06          |
|             | 663             | FHS                  | ٠ .             | 70.5           | 3.7   | • 4 4         | • 1 1         |
|             | 505             | LN3                  | 1               |                | 4444  | • 66          | J • C C       |
|             | 6(1             | LT                   | 1               | 4444           | 44.44 | • 6.6         | <b>6 .</b> 99 |

| Repo | rt | 4735 |
|------|----|------|
|------|----|------|

Bolt Beranek and Newman, Inc.

### PERSONNEL NUISE EXPUSURE AND IMPACT AVERAGES

THRESHULD LEVEL = 50.0 LEA

8-HR PERMISSIBLE LEVEL = 70.0 LEA

Exchange kalt = 5 ura

| FF-1097 | USS | MOINESTER |
|---------|-----|-----------|
|         |     |           |

| GRADE<br>CODE  | GRADE<br>DESCRIPTION | NU. OF<br>PEKS. | DE AN | LEVEL<br>Solo | BALLY<br>ML AH | Nulse Dusc     |
|----------------|----------------------|-----------------|-------|---------------|----------------|----------------|
| 202            | nnc                  | 1               | 90.1  | 0.0           | 1.01           | 0.30           |
| 105            | ET3                  | ક               | 40.5  | 4.6           | . 91           | . 64           |
| <u>}</u> fte   |                      |                 | 00.5  | 5.0           | 71             | .27            |
| 203            | nm1                  | 1               | 00.3  | 0.0           | • 00           | J • UU         |
| 207            | MMFA                 | 4               | 67.4  | 4.4           | •59            | • 40           |
| 301            |                      |                 | 84.5  | . 4           |                | .03            |
| 603            | ENS                  | 1               | 02.7  | 0.0           | . 37           | U • 0C         |
| 108            | bTFR                 | 2               | 60.9  | 7.4           | ٥٤.            | • 34           |
| <del>204</del> | -hn2                 |                 | 02.0  | 1.4           | obt.           | • 96           |
| 205            | nn3                  | 7               | 61.9  | 3.0           |                | •15            |
| 104            | LT2                  | 4               | 61.1  | 0.0           | • 49           | 0.00           |
| 266            |                      | ÷               | 00.7  | 3.7           |                | .17            |
| 5¢3            | LN1                  | 1               | 14.9  | 6.0           | •12            | 0.00           |
| 167            | ŁTFA                 | Ž               | 74.5  | 4.1           | • 1 6          | دن.            |
|                |                      |                 | 63.8  | U.0           |                | 0.66           |
| 102            | eTC                  | ī               | 4444  | 4640          | .00            | 3.00           |
| 504            | ENZ                  | ī               | 444%  | 6444          | • 60           | U • 116        |
|                |                      | i               | ***   | ***           |                | 9 <b>.</b> 9 9 |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES.

THRESHULD LEVEL = 60.0 DLA 8-HR PERHISSIBLE LEVEL = 90.0 LBA EXCHANGE RATE = 5 DUA

### FF-1075 USS TRIPPE

| GRADE<br>CODE    | GRADE<br>DESCRIPTION | NU. UF<br>PEKS. | SUUNU<br>ML AN | LEVEL<br>S.u. | DAILY | Nulse 665c      |
|------------------|----------------------|-----------------|----------------|---------------|-------|-----------------|
| 205              | hM3                  | 1               | 90.9           | 0.0           | 1.14  | 0.00            |
| 107              | ETFA                 | 1               | 90.5           | 0.0           | 1.67  | . 0.00          |
| <del>20t</del> — |                      |                 | · 67.8         | 3.3           | 74    | . 31            |
| 166              | ETFN                 | 2               | 90.9           | 0.0           | .57   | •53             |
| 207              | MMFA                 | 1               | <b>64.0</b>    | 0.0           | .44   | 6.00            |
|                  | -nn'c                |                 | 03.3           | U . O         | 34    | <b>₽.</b> •00 ≥ |
| 105              | BT3                  | 2               | 68.0           | 0.0           | عد .  | .54             |
| 164              | bT2                  | 3               | 67.5           | U • 0         | . 4   | -41             |
| t3               | <del>+ - +</del>     | <del></del>     | 79.0           | U.0           |       | <b>v.</b> vc    |
| 103              | <b>611</b>           | 1               | 4444           | ***           | • 00  | <b>⊍.</b> €9    |

# APPENDIX G

Individual Noise Exposure Results for All 12 Ships
Using Individual Location Noise Level Data
Averaged Over All 12 Ships

#### PERSUNNEL NUISE EXPUDURE AND IMPACT

THRESHOLD LEVEL = BULD DDA
8-HR PERHISSIBLE LEVEL = 90.0 DDA
EXCHANGE RATE

|   | GRADE                          | GRADE            | NU. CF        | SOUND LEVEL                                   | DAILY       | Noise utse    |
|---|--------------------------------|------------------|---------------|-----------------------------------------------|-------------|---------------|
|   | CODE                           | DESCRIPTION -    | <del></del>   | TIERN W. L.                                   | ··· the Ats | H.L.          |
|   |                                |                  |               | 71.3                                          |             |               |
|   | 60400                          | L CDr.           | 1             | THINK WINE                                    | • ( 0       | • C2          |
|   | <del>60364</del>               |                  |               |                                               | 76          | 1.17          |
|   | 60303                          | εNS              | 1             | 62.4 04.4                                     | - 37        | • 45          |
|   | 60302                          | FNS              | 1             | 74.5 17.4                                     | •12         | ·15           |
|   | <del>60361</del>               |                  |               | 1. 15                                         | ¥44         | 10.           |
|   | 60300                          | ENS              | 1             | 60.1 34.3                                     | ಕರ€         | •91           |
|   | 60207                          | LŢJu             | 1             | 72.1 74.5                                     | • 6 0       | •1I           |
|   | <del>6</del> 02(-6             | <u>t-</u> 136    | <u></u>       | 77.0                                          |             | •lt           |
|   | 60205                          | LTJU             | 1             | 75.5 81.1                                     | ٠ 1 ٥       | • 24          |
|   | 66264                          | LŢ Ju            | 1             | 03.7 60.1                                     | • 42        | • D €         |
| - | - 66263                        | i T du           |               | €0.3 01.4                                     | • 46        | • <b>3</b>    |
|   | <b>6</b> 0262                  | LTJC             | 1             | 72.0                                          | • U t       | .14           |
|   | 66271                          | LT JG            | i             | 00.3 04.5                                     |             | • 30          |
|   | <del>-6</del> 6266             | ŁŦ <del>Ju</del> |               | 107.2 90.6                                    | • b t       | 1.66          |
|   | 60105                          | LT               | 1             | 74.5 77.6                                     | .11         | ∙⊥d           |
|   | 60104                          | LT               | 1             | 70.9 74.1                                     | 1.13        | ¥•7€          |
|   | <del>601</del> 63              |                  | <u>-</u>      | 76.1 -74.4                                    | 14          | . 65          |
|   | 60102                          | LT               | 1             | 60.2 Bu.E                                     | • 26        | • 7           |
|   | 60101                          | LT               | 1             | and and                                       | •00         | 0.66          |
| · | <del>60166</del>               | ŁŦ               |               |                                               | e           | • <b>€</b> •  |
|   | 56661                          | ENFR             | 1             | AKAA MAA                                      | • 0 6       | <b>∪ •</b> €€ |
|   | 50600                          | ENFT             | 1             | 48.6 161.2                                    | 3.51        | 4.16          |
|   | <del>-50</del> 56 <del>c</del> |                  |               |                                               | 74          | 1.45          |
|   | うじうじち                          | c N 3            | 1             | 42.3 47.9                                     | 1.54        | 3.00          |
|   | 56504                          | LN3              | 1             | 45.3 101.1                                    | 2.09        | 4.67          |
|   | <del>&gt;</del> 6->63          | <del></del>      | <del></del> 1 | <del>++++++++++++++++++++++++++++++++++</del> |             | ~ ∠ ಕಳೆದ      |
|   | 50502                          | LN3              | 1             | 40.2 94.4                                     | 1.02        | 1.63          |
|   | 50501                          | EN3              | 1             | 20.7 42.4                                     | .64         | 4.44          |
|   | 56560                          | <del></del>      | <del></del>   | <del> 42+641</del> +3                         |             | c.49          |
|   | 50400                          | ENZ              | 1             | 02.9 67.0                                     | . 37        | .74           |
|   | 50304                          | EN1              | 1             | 93.2 45.4                                     | 1.56        | 4.40          |
|   | <del>-503</del> 63             | <del></del>      | <del></del>   | <del></del>                                   | 2.16        | 4.67          |
|   | 50302                          | LNI              | 1             | 70.5 92.4                                     | 1.05        | 4.34          |
|   | 50301                          | LN1              | 1             | 71.9 95.9                                     | 1 د ۱۰      | ١٠٤١          |
|   | 56300                          |                  |               | U. od - Calo                                  | • 30        | • • • • 7     |
|   | 40 70 v                        | ENFA             | 1             | 13.9 75.2                                     | -11         | .13           |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT

THRESHULU LEVEL = 80.0 LEA 6-HR PERMISSIELE LEVEL = 90.0 DEA EXCHANGE RATE

|             | GRADE   | GRADE         | NL. UF   |                 | LEVEL               | -            | NUISE Udbe   |
|-------------|---------|---------------|----------|-----------------|---------------------|--------------|--------------|
|             | CODE -  | DESCRIPTION - | #E#30    | nt AN           | - w.L.              | #EAN         | ***          |
|             | 40602   | LMFN          | 1        | 62.6            | 64.7                | •36          | • 40         |
| <del></del> | · 49661 | <del></del>   |          | <del></del> >-4 | <b>67.6</b>         | • 53         | .74          |
|             | 40660   | EMFN          | 1        | ***             | Melodet             | • <b>6</b> 0 | L.UC         |
|             | 40 50 5 | ŁM3           | 1        | 16.5            | 77.0                | .15          | .17          |
|             | 40564   |               |          | <del></del>     |                     |              | •39          |
|             | 40563   | EM3 1         | 1        | €Û•8            | 06.5                | ٠2٤          | • 34         |
|             | 40502   | EM3           | 1        | ***             | ***                 | • U C        | <b>∪.</b> 66 |
|             | 40561   |               |          |                 | ee.5                | 14           | • 67         |
|             | 40500   | EN3           | 1        | 64.9            | 8c . 4              | .49          | •65          |
|             | 46463   | EM2           | 1        | 75.6            | 77.5                | .14          | -10          |
|             | 46462   | -4M2          | <b>±</b> | 11.1            | 77.0                | .17          | • < 4        |
|             | 404t1   | r m Z         | 1        | 61.0            | 54.7                | . 32         | • 4 8        |
|             | 40400   | £M2           | 1        | .5.7            | غاه يالا            | • >>         | 1.00         |
|             | 40362   |               |          |                 | <del></del>         | 26           | •58          |
|             | 40301   | ET1           | 1        | c/.U            | 50.U                | . c t        | • ७८         |
|             | 40360   | ŁM1           | 1        | >>・1            | 44.4                | 6.06         | 3.46         |
| -           | -46266  | EMC           |          |                 | -41.2               | ····· • 65   | 1.40         |
|             | 30361   | ₽R            | 1        | 76.4            | 74.4                | .15          | • < 5        |
|             | 30300   | # K           | 1        | 53.2            | 65.2                | . 19         | • 51         |
|             | 36262   |               | <u></u>  | 47.1            | lév ez              | 2.07         | - 4.64       |
|             | 30201   | FA            | 1        | 630E            | 50 · 4              | . 39         | •51          |
|             | 30200   | FA            | 1        | <b>HATT</b>     | 3444¢               | . 66         | 0.00         |
| · - · · · · | 30167   | FAi           |          | - 65.8 -        |                     | >6           | 1.14         |
|             | 30106   | +N            | 1        | 64.3            | 72.0                | .00          | •09          |
|             | 30105   | FN            | 1        | 8 V • 3         | 60.1                | • 26         | •50          |
|             | 3614    |               |          | <del></del>     | 67.1                | •43          | • • 7        |
|             | 30103   | FN            | 1        | 61.0            | 06.02               | . 44         | • 34         |
|             | 30102   | FN            | 1        | 64.1            | 80.1                | .29          | • 20         |
|             | 30161   |               |          |                 | <del>- 64+5</del> - |              | •47          |
|             | 30166   | FN            | 2        | 65.4            | 66.5                | •57          | •t2          |
|             | 21000   | nHC5          | 1        | 72.9            | 74.5                | • 69         | •14          |
|             | -24941- |               |          |                 |                     | 43           |              |
|             | 20960   | nr            | 1        | 66.2            | 80.1                | . 59         | .71          |
|             | 20800   | MMFF          | • 1      | 60.7            | 4006                | .64          | 4.02         |
|             | 2076E   |               | ····     |                 | 4.10                |              | • 4 4        |
|             | 20707   | NMFA          | 3        | 90.0            | 44.6                | 1.00         | 4.10         |

# PERSUNNEL NUISE EXPUSURE AND IMPACT

THRESHULD LEVEL = SU.E DEA 8-HR PERMISSIBLE LEVEE = 90.0 DUM 

|   | GRADE            | GRADE                                             | NU. uF       | ろいひなん                                  | LEVEL             | LEILY           | NUISE DUSE   |
|---|------------------|---------------------------------------------------|--------------|----------------------------------------|-------------------|-----------------|--------------|
|   | CODE             | DESCRIPTION -                                     | <del></del>  |                                        | +. L.             | TE AN           | n.L.         |
|   |                  |                                                   |              |                                        |                   |                 |              |
|   | 20706            | MMEA                                              | 1            | 63.3                                   | 50. U             | . 39            | .57          |
|   | <u>?</u> 0705    |                                                   |              | 77.5                                   | 74.5              | 16              | • 4          |
|   | 20704            | MHFA                                              | 1            | t 4.0                                  | tb.7              | . 47            | • > >        |
|   | 20703            | MMFA                                              | 1            | 00.1                                   | ti.i              | • 5 ₹           | • <b>6</b> 5 |
|   | 26762            |                                                   | <b>1</b> -   | こちとっせ                                  | 44.7              | 1.47            | 1.46         |
|   | 20701            | MMFA                                              | 3            | 67.4                                   | とり。こ              | . 75            | •90          |
|   | <b>207</b> 00    | MMFA                                              | 3            | c 5 • 4                                | 90.5              | . 53            | 1.07         |
|   | <del></del>      |                                                   | <del>-</del> | 77.4                                   | <del>₹~</del> • ~ | 17              | • 25         |
|   | 20629            | BHEN                                              | 1            | 62.9                                   | 63.4              | . 37            | <b>.4</b> 0  |
|   | 20628            | MMFH                                              | 1            | 4245                                   | 42.5              | 1.42            | 1.63         |
|   | ettoe 7 -        | · · · · <del>· · · · · · · · · · · · · · · </del> | • • •        | t7.4                                   | t7 . L            | .64             | .40          |
|   | 20626            | nKER                                              | 1            | 61.0                                   | 51.0              | • 6 5           | .74          |
|   | 20625            | MMEN                                              | 1            | -1.0                                   | 06.7              | • 3 6           | . 37         |
|   |                  | <del>n#fh</del>                                   |              | <del></del>                            | 41.4              | 48              | 1.21         |
|   | 20623            | MMEN                                              | 1            | 79.2                                   | 61.7              | • 6 6           | •32          |
|   | 20622            | MMFN                                              | 1            | 60.9                                   | 64.6              | • 29            | . j t        |
|   | <del></del>      |                                                   | <del></del>  | <del></del>                            | -01.4             | ·· • <b>6</b> 3 | · .7v        |
|   | 20620            | MMFN                                              | 1            | 04.1                                   | 90.0              | • 60            | 1.04         |
|   | 20619            | MMFN                                              | 1            | 65.7                                   | 89.5              | 4               | .44          |
|   | <del>20618</del> |                                                   | <del>1</del> | <del>o</del> 3.6                       | せっょっ              | 41              | .52          |
|   | 20617            | MMEN                                              | 1            | 73.0                                   | 70.9              | .14             | .1c          |
|   | 20616            | MMFN                                              | ì            | 4444                                   | <b>44×4</b>       | .00             |              |
|   |                  | <del>nhfn</del>                                   | <del></del>  | ······································ | -41.0             |                 | 1.64         |
|   | 20614            | MMFN                                              | 1            | 67.0                                   | 6/.5              | .65             | .70          |
|   | 20613            | MMFN                                              | 1            | 93.4                                   | 92.5              | 1.61            | ر. 15        |
|   | <del>20012</del> |                                                   |              |                                        | to.6              | - 70            | • 64         |
|   | 26611            | MMEN                                              | 1            | 69.3                                   | 93.4              | . 41            | 1.61         |
|   | 20610            | MMFN                                              | ī            | ٤1.4                                   | 04.9              | . 30            | •47          |
|   | 26609            |                                                   |              |                                        | 6000              |                 |              |
|   | 20608            | MMFN                                              | ì            | 01.2                                   | 63.9              | 06.             | .43          |
|   | 20607            | MMFN                                              | 2            | 69.9                                   | 7:.3              | .06             | • < 0        |
|   |                  | MAFN                                              | <del></del>  | <del>75</del> ,4                       | 74.6              |                 | . 24         |
|   | 20605            | MMFN                                              | ī            | 71.3                                   | 70.0              | .07             | • 14         |
|   | 20604            | MEN                                               | Ž            | 03.1                                   | 67.1              | . 34            | • 6 /        |
|   |                  |                                                   |              | <del></del>                            | 64.0              | 330             |              |
| i | 20602            | MEN                                               | 2            | 64.4                                   | 93.6              | • 46            | 4-64         |
|   |                  |                                                   | •            | <b>0,0</b> ,                           | /3 • 0            | • • •           | A . C . T    |
|   |                  |                                                   |              |                                        |                   |                 |              |

#### PERSUNNEL NEISE EXPUSURE AND INFACT

THRESHOLD LEVEL = 80.0 00A
8-NK PERMISSIBLE LEVEL = 90.0 00A
EXCHANGE RATE - 5 00A

| GRADE                   | GRADE                                         | Nu. uf                                 | SLUND       | LLICL                                    | ÜALLY | NU15: 6052 |
|-------------------------|-----------------------------------------------|----------------------------------------|-------------|------------------------------------------|-------|------------|
| CODE                    | DESCRIPTION                                   | +tks.                                  | THE AN      | n.t.                                     | HEAR  | h.c.       |
|                         |                                               |                                        |             |                                          |       | •          |
| 20601                   | MMEN                                          | 1                                      | c 7 • 8     | 42.3                                     | • 4 6 | 1.19       |
| ··- <del>የ</del> ሰዋፅፅ · |                                               | ·- • • • • • • • • • • • • • • • • • • | せたかか        |                                          | € 3 • | 1.15       |
| 20535                   | r M3                                          | 1                                      | 16.5        | 89.0                                     | . 14  | • 47       |
| 26554                   | mm3                                           | 4                                      | 75.9        | و . د خ                                  | - 21  | .45        |
| 20533 -                 | #M3                                           | · }                                    | 40.5        | ····                                     | 1.04  | 1.67       |
| 20532                   | mm3                                           | Ĺ                                      | 61.2        | <b>85.9</b>                              | • 25  | • 56       |
| 20531                   | mr3                                           | 2                                      | 00.4        | 40.6                                     | . 65  | 1.14       |
| 20530                   |                                               |                                        | ··· £ • c-> | <del></del>                              | • 35  | -41        |
| 26529                   | nm3                                           | 1                                      | 50.b        | 5006                                     | .04   | 4.04       |
| 26528                   | nm3                                           | 1                                      | 06.7        | 71.4                                     | 7 د ٠ | 1.66       |
| -21527                  | - #itis -                                     | 1                                      | 00.0        | 400 • 1                                  | . 64  | • 10       |
| 20526                   | Is in 3                                       | ì                                      | 17.5        | 77.5                                     | • £ Ł | . 24       |
| 26525                   | r ~ 3                                         | £                                      | 90.1        | 43.0                                     | تمامه | 1.53       |
| 26524                   |                                               |                                        | i           | <del>- 80 • 4</del> 2                    | • 9 l | •⊅≎        |
| 20523                   | mr3                                           | 1                                      | とう。し        | <b>₺</b> 5 <b>• 5</b>                    | • 50  | •53        |
| 20522                   | nf3                                           | 1                                      | 50.7        | 94.6                                     | 4.11  | 4.15       |
| 20521                   |                                               | <u> </u>                               | 66.4        | <b>u</b> ∤ • 5                           | •65   | •64        |
| 20520                   | mm3                                           | 1                                      | €0.7        | S 7                                      | . 27  | • 3 to     |
| 20519                   | nF3                                           | 1                                      | 6 t = 3     | 67.4                                     | . 79  | •46        |
|                         | ·· <del>·······························</del> | 1                                      | 10.6        | (-                                       | • 20  | .44        |
| 20517                   | mr3                                           | 1                                      | 40.7        | 43.2                                     | 1.13  | 4.56       |
| 20516                   | MM3                                           | 1                                      | 04.)        | 20.1                                     | . 43  | •5₺        |
| 24515                   |                                               |                                        |             | 01.2                                     | • 56  | • t: n     |
| 20514                   | nns                                           | i.                                     | 62.6        | とりょう                                     | .51   | • > 4      |
| 20513                   | mK3                                           | 1                                      | 76.7        | 91.7                                     | 1.13  | 4.67       |
| 20512                   |                                               |                                        | e'o         | - 50.4                                   |       | •62        |
| 20511                   | mm3                                           | 3                                      | ***         | ***                                      |       | Ueli       |
| 20510                   | mm3                                           | ì                                      | 39.3        | 65.6                                     | • 52  | • 56       |
|                         | Ar3                                           |                                        | -01-4       | -54.9                                    | 0د    | . 44       |
| 20508                   | mm3                                           | ف                                      | 04.6        | و و ن                                    | . 45  | 1.14       |
| 20507                   | คห3                                           | ī                                      | 67.6        | t±•à                                     | .71   | .76        |
|                         |                                               |                                        |             | و زمان                                   | •23   | •∠₺        |
| 20505                   | mm3                                           | ī                                      | 61.9        | ٥.٠٠                                     | . 33  | •47        |
| 20504                   | mm3                                           | 2                                      | 06.5        | ار د د د د د د د د د د د د د د د د د د د | .01   | • c (•     |
| 20563                   | 3                                             | 5                                      | 94 a 5      | 21.7                                     | . 47  | = =        |
| 20502                   | hm3                                           | 1                                      | 60.1        | 31.7                                     | .59   | .73        |
|                         | *****                                         | •                                      | 2001        | - 1 • 1                                  | • . 7 | • • •      |

#### PERSUNNEL NUISE EXPUSERE AND IMPACT

THRESHOLD LEVEL # 80.0 DEA 8-MR PERMISSIELE LEVEL # 90.0 DEA EXCHANGE RATE # 5 DEA

|                      | RADE<br>ODE | GRADE<br>DESCRIPTION                             | NO. UF                                | SOUND<br>FEAN                          | LEVLL<br>H.L. | LAILY   | NUISE DUSE |
|----------------------|-------------|--------------------------------------------------|---------------------------------------|----------------------------------------|---------------|---------|------------|
| 20                   | 501         | MM3                                              | 2                                     | 56.9                                   | 95.0          | • 65    | 2.00       |
|                      |             | mn3                                              | م.<br>سيسرز بيستنسي                   | <del>~~ 5</del> 7.8 ·                  | -43.t         | ··· .75 | 1.65       |
|                      |             | nm2                                              | ì                                     | 62.6                                   | 03.4          | 7       | .46        |
|                      |             | nn2                                              | i                                     | 13.2                                   | 75.6          | • 10    | .13        |
|                      |             | M#5                                              | • • • • • • • • • • • • • • • • • • • | ······································ | 90.4          | - 94    | 1.05       |
|                      |             | mm2                                              | ī                                     | 76.8                                   | 40.5          | 1.47    | 1.00       |
|                      |             | nr2                                              | ī                                     | ****                                   | ***           |         | 0.00       |
|                      |             | nrz                                              |                                       |                                        |               |         | •45        |
|                      | 417         | nr2                                              | ī                                     | 66.0                                   | ¢7.1          | • 57    | .67        |
|                      |             | nr.z                                             | ī                                     | 54.7                                   | <b>خ</b> وں ن | 4.5     | •62        |
|                      |             | ###                                              | ì                                     | 5/.1                                   | +1.7          | . 67    | .14        |
|                      |             | mm2                                              | 1                                     | 71.1                                   | 76 04         | 1.16    | 4.40       |
|                      |             | hm2                                              | ī                                     | 40.6                                   | 72 01         | 1.04    | 1.34       |
| · · <del>- ¿</del> ( | 414         | <del>*************************************</del> |                                       | to.b                                   |               | ·····   | .75        |
|                      |             | nm2                                              | ī                                     | 60.2                                   | 90.2          | .70     | 1.02       |
|                      |             | NF Z                                             | ī                                     | 50.5                                   | 57.0          | . 64    | •66        |
| <u></u> -            | 469         | MM2                                              |                                       |                                        | - 47.6        | 1 7     | £ . 5 C    |
|                      |             | MM2                                              | ī                                     | 61.4                                   | 54.4          | .30     | . 47       |
|                      |             | nn2                                              | ī                                     | 90.1                                   | 91.6          | 1.01    | Aelt       |
|                      |             | nH2                                              |                                       |                                        |               |         | •60        |
|                      |             | nh2                                              | ī                                     | 61.3                                   | 63            | -30     | • 35       |
|                      |             | NEZ                                              | ì                                     | 00.9                                   | 27.9          | • 65    | .74        |
| ·· <del>2</del> 0    | 46.3        | n#2                                              | <u>-</u>                              | - 4444                                 | - 4444        |         | .14        |
| 20                   |             | MM2                                              | ī                                     | 65.2                                   | 63.6          | •52     | • 24       |
| 20                   | 461         | n#2                                              | ī                                     | 4.60                                   | 83.4          | .43     | • 5 5      |
| <del></del>          | 460         | mm2                                              | <u>-</u>                              | 63.2                                   | <del></del>   |         | •67        |
| 26                   | 309         | nrl                                              | ī                                     | 0 Y • B                                | 90.5          | .47     | 1.07       |
| 20                   | 308         | nn1                                              | ī                                     | 77.5                                   | 7c . 4        | • i b   | • 4 9      |
|                      | 307         | MM1                                              | <u>-</u>                              | 14.6                                   | <del></del>   | 24      | • 66       |
| 20                   | 366         | MM1                                              | 1                                     | 54.5                                   | 90.1          | 1.05    | ڌذه        |
| 20                   | 305         | nn1                                              | 1                                     | 67.0                                   | 67.7          | 33.     | د7.        |
|                      | 304         | MM1                                              |                                       | <del></del>                            |               |         |            |
| 20                   | 303         | MMI                                              | 1                                     | ***                                    | ***           | • 00    | i . 6 i    |
| 20                   | 362         | Mml .                                            | 1                                     | 14.1                                   | 7201          | . 68    | .10        |
|                      | 301         | h41                                              |                                       | 6/10                                   | bb . b        | • 43.   | • 0 3      |
| . 20                 | 360         | hm1                                              | Ī                                     | 17.0                                   | CU . 9        | .72     | • 66       |

#### PERSONNEL NUISE EXPOSERE AND IMPACT

THRESHOLD LEVEL # 00.0 DUA 6-HR PERMISSIBLE LEVEL # 90.0 DUA EXCHANGE RATE - 5 DEA

|          | GRADE | GRADE        | NO. GF                                | SUUNU         | Lével            | BALLY   | No 1St Bus.  |
|----------|-------|--------------|---------------------------------------|---------------|------------------|---------|--------------|
|          | CODE  | DESCRIPTION  | PE+5                                  | #EAN          |                  | fte Att | hou.         |
|          | 20204 | nnC          | 1                                     | t 2 • 5       | 61.7             | 7       | •72          |
|          |       |              |                                       | 4424          |                  | . 60    | <b>⊍.</b> 0€ |
|          | 26262 | nHC          | ì                                     | 0.60          | 64.3             | • 36    | • 45         |
|          | 20201 | MMC          | 1                                     | 64.4          | £6.5             | . 49    | •61          |
|          |       |              | <u>}</u>                              | - 42.0        |                  | 1.47    | £ • 1 £      |
|          | 10901 | ьт .         | 1                                     | ****          | <b>84</b> 7¥     | • 00    | J • CC       |
|          | 10900 | ьT           | 1                                     | 0>.1          | 01.5             | •56     | .71          |
|          | 16864 | bTFk         |                                       | 41.2          | 46.3             | -1.17   | 1.37         |
|          | 10603 | UTFR         | 1                                     | 24.4          | 41.4             | .49     | 4.64         |
|          | 10802 | otta         | 1                                     | YULL          | 41.02            | 1.01    | 1.10         |
|          |       | eTFX .       | · •                                   | 70.0          | 0001             | • i 9   | ي ف          |
|          | 10600 | BTFK         | 1                                     | 64.5          | 27.5             | . 47    | . 74         |
|          | 10714 | LTFA         | i                                     | 42.4          | 44.4             | 1.45    | 1.23         |
|          | 10713 | OTFA         |                                       | e7.0          | 41.0             | . 60    | 1.64         |
|          | 10712 | bTFA         | 1                                     | 60.2          | 60.0             | •54     | • 0 4        |
|          | 10711 | bTF1         | 1                                     | <b>ゃち。</b> な  | 41.0             | • > 6   | 1.14         |
|          | 10710 |              |                                       | & 7 s z       | <del>67.</del> 6 | • • • • | . 87         |
|          | 10709 | BTFA         | 1                                     | 6 7 . L       | 46.4             | . 69    | よっじち         |
|          | 10708 | oTFA         | 1                                     | 41.2          | 45.4             | 1.18    | 1.ti         |
|          | 10767 |              | <u></u> <del></del>                   |               | 41.9             | . 65    | 1.31         |
|          | 10706 | BTFA         | i                                     | 72.7          | 40.3             | 1.40    | 4.4%         |
|          | 10765 | UTFA         | 2                                     | 96.1          | 42.6             | 1.61    | 2.603        |
|          | 16764 |              |                                       | 67.1 -        | -01.4            | 67      | • 0 4        |
|          | 10703 | ETFA         | 1                                     | 4047          | ****             | نا•     | 0.06         |
|          | 10702 | BTFA         | 1                                     | 11.0          | 73.3             | .07     | -16          |
|          | 10761 | <del></del>  |                                       | -70.3.        | 7770             | - · 15  | .24          |
|          | 10700 | ŁTFA         | 3                                     | 41.3          | 46.4             | 1.21    | c.42         |
|          | 10633 | ETFN         | 1                                     | 63.9          | 20.06            | . 43    | .57          |
|          | 10632 | bIFA         | · · · · · · · · · · · · · · · · · · · |               | 46.6             | 61      | 4.00         |
|          | 10631 | tten –       | 1                                     | 67.3          | 90.1             | . 69    | 1.61         |
|          | 10630 | btfn         | 1                                     | 77.3          | 70.0             | .17     | .21          |
|          | 10659 | BTFN         | <del></del>                           |               | Ye - 3-          | 1.89    | £ .41        |
|          | 10628 | BTFN         | 1                                     | 46.3          | 44.0             | 1.38    | 4.90         |
|          | 10627 | bTFN         | . 1                                   | <b>U.J.</b> 1 | 62.02            | عد .    | • 52         |
| <u>.</u> |       | <b>ъТ</b> FA | <del></del>                           | toy           | ×1.6             | >6      | .12          |
|          | 10625 | ETFN         | ī                                     | 34.7          | 64.5             | . 40    | .44          |

#### PERSUNNEL NULSE EXPUSURE AND IMPACT

THRESHOLD LEVEL = 80.0 DEA 6-HR PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

|     | CODE               | - DESCRIPTION   | D            |                    |                 |          |        |
|-----|--------------------|-----------------|--------------|--------------------|-----------------|----------|--------|
|     |                    |                 |              | TEAN               | THIL.           | na en    | Hete   |
|     | 10624              | bTFN            | 1            | 6c.3               | 4 3             | .79      | よっしち   |
|     | <del>10623</del> - |                 |              | t7y                | - ty.1          | . 75     | • 54   |
|     | 10622              | ETFN            | 1            | 74.4               | 46.3            | 1.47     | 6.44   |
|     | 10621              | ETFN            | 1            | 90.0               | 90.5            | 1.00     | 1.07   |
|     | ltozo -            |                 |              | tt.7 ·             | <del>4</del> 35 | . 54     | 1.14   |
|     | 10614              | ETFN            | ì            | 91.3               | 46.5            | leib     | 1.41   |
| _   | 10616              | BTFN            | 1            | 64.8               | 43.2            | . 47     | 26     |
|     | 10-617             |                 | <del>2</del> |                    |                 | 74       | .47    |
| •   | 10616              | ETFN            | 1            | 41.0               | 42.7            | 1.25     | 45     |
|     | 10615              | ETEN            | ì            | 69.1               | 90.7            | • t z    | 1.16   |
|     | 10614              | <del>5168</del> | ì            | 53.7               | 75.3            | .41      | • 64   |
|     | 10613              | LTFK            | ь            | 7002               | 91.9            | ا المادة | √ د ه  |
|     | 10612              | bTFM            | 1            | 40.00              | 42.06           | 4.10     | 1.30   |
|     | 10011              | <del></del>     |              | <del></del>        | 4tt .tt         | 1.40     | 1.00   |
|     | 10610              | <b>btf</b> N    | 1            | 46.4               | 45.0            | 1.49     | 4.01   |
| •   | 10669              | ETFN            | 1            | 96.3               | 44.0            | 1.30     | 1.90   |
|     | 10608              |                 |              | <del>e4</del> .0 - |                 |          | •c7    |
|     | 10607              | bTFN            | 2            | 65.1               | 93.0            | . 77     | 4.74   |
| ·•· | 10666              | ETFN            | 1            | 60.4               | 67.4            | . 64     | • tie  |
|     | 10665              | OTFN            |              | <del></del>        | 46.5            | 46       | 1.37   |
| -   | 10664              | ETFN            | 1            | 15.4               | 10.5            | • 13     | •40    |
|     | 10603              | LTFN            | 1            | 66.4               | 85.(            | .61      | .70    |
|     | <del>1</del> 0665  |                 |              |                    | 44.5            | • • 7    | 1.6/   |
|     | 10601              | e T f n         | 4            | 64.1               | 43.1            | • o t    | 1.54   |
|     | 10600              | LTFN            | 3            | 2 644              | などとと            | • 40     | U. 0¢  |
|     | 16524              | <del></del>     |              | <del></del>        | • •             | 52       | • 52   |
|     | 10526              | ьT3             | 1            | 49.7               | 46.2            | . 47     | 1.30   |
|     | 10527              | LT3             | 1            | 70.3               | 61.1            | 0        | 9      |
|     | 10526              | <del></del>     | <u>}</u>     | <del>-45</del> .6  | <del></del>     | 2.10     | - 6.45 |
|     | 16525              | eT3             | 1            | 62.3               | 07.4            | . 34     | •4t    |
|     | 10524              | ŁT3             | 1            | £7.7               | 91.3            | .72      | 1.19   |
|     | 16523              | <del></del>     | <del></del>  |                    |                 |          | 1.64   |
|     | 10522              | 5T3             | i            | 90.7               | 42.6            | 1.10     | 1.34   |
|     | 10521              | ьТз             | ī            | 66.6               | 29.0            | ./c      | • 0 6  |
|     | 10520              |                 | <u>_</u>     | - 67.5             | t7.4            | . 74     | .42    |
|     | 10519              | ET3             | ī            | 5 U • U            | 57.0            | .57      | .74    |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT

THRESHULU LEVEL = 80.0 DEA 8-NA PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

|   | GRADE             | GRADE                       | NU. UF           |              | LEVLL                 |                | Nolbe base   |
|---|-------------------|-----------------------------|------------------|--------------|-----------------------|----------------|--------------|
|   | CODE -            | - DESCRIPTION -             | <del>Р</del> £кэ | -héan        | "Hoto                 | ME AIT         | how.         |
|   | 10518             | bT3                         | 1                | £3.8         | 5 - ده                | •44            | د د ه        |
|   | <del>1051</del> 7 | =                           | _                | <del> </del> |                       |                | •57          |
|   | 10516             | PT3                         | 1                | 76.1         | 97                    | 1.01           | 1.10         |
|   | 16515             | bT3                         | i                | 10.4         | 51.5                  | . 40           | اد.          |
|   | _16514            | —— <b>p13</b> —————         |                  |              | <del>- 6</del> 7 • 4  | .79            | •92          |
|   | 10513             | ET3                         | 1                | 61.3         | 03.0                  | ک<br>ک         | • 42         |
|   | 10512             | £13                         | î                | 21.4         | 64.6                  | ر د .<br>د د . | . 37         |
|   | -10511            | <del></del>                 |                  | 70.5         |                       |                | .44          |
|   | 10510             | e <b>7</b> 3                | ī                | 07.4         | 91.0                  | . 44           | 1.15         |
|   | 10569             | £13                         | ī                |              | 43.5                  | 1.25           | 1.04         |
|   | 10563             | 613                         | ī                | U 0 0 4      | 9000                  | • 6 (-         | 1.09         |
|   | 10507             | t T3                        | ž                | . J          | ق ب                   | .51            |              |
|   | 16266             | ŁTż                         | ž                | 59.9         | Ye . 3                | • 9 :          | آدون         |
|   | 10505             |                             |                  | -e1.7 ·      |                       | 73             | 1.60         |
|   | 10504             | 6T3                         | <u> </u>         | 43.7         | 47.6                  | 1.00           | 2.72         |
|   | 10503             | ьТ3                         | ī                | 74.5         | 24.5                  |                | .41          |
| · | 10562             | t13                         |                  | 42.4         | -46.1                 | 4.50           | ٤٠34         |
|   | 10501             | 6 <b>T</b> 3                | 6                | ****         | 4444                  | • CC           | 0.00         |
|   | 10500             | ьТ3                         | 4                | 85.4         | 84.5                  | .61            | .94          |
|   | 10413             |                             |                  | 40.1         | 41.6                  | 1.62           | 1.40         |
|   | 10412             | oT2                         | 1                | 4.60         | cc . 1                | .57            | و نا ہ       |
|   | 10411             | LT2                         | 1                | to.1         | 24.6                  | .77            | . 24         |
|   | _10410            | -5T ¿                       |                  |              | <del>. بار</del> و ال |                | 1.01         |
|   | 10409             | ET2                         | 1                | 60.3         | 84.2                  | 33.            | •40          |
|   | 10408             | eT2                         | 1                | 41.0         | 94.1                  | 1.25           | 1.77         |
|   | 10467             | <del></del> <del>`</del> 12 | 3                |              | - Oy . C .            | 52             | . 67         |
|   | 10406             | 6 <b>7</b> 2                | 1                | eu.7         | t3.4                  | • ∠ ర          | .46          |
|   | 10405             | ET2                         | 1                | 67.5         | oc . l                | .71            | .70          |
|   | _10464            | <u> </u>                    | <del></del>      |              | · 45.0 -              | 41             | -54          |
|   | 10463             | ŁT2                         | 1                | 43.3         | 97.3                  | 1.56           | 2.75         |
|   | 10402             | BT2                         | 4                | 74.5         | 61.0                  | .23            | •72          |
|   | 10401             | 812                         |                  |              | 44-5.                 | 43             | 1.67         |
|   | 10400             | 6T2                         | L                | ***          | ANA A                 | • 00           | <b>0.0</b> 0 |
|   | 10369             | ŁT1                         | 1                | 03.7         | 00.9                  | . 42           | • 66         |
|   | 1030F             |                             |                  |              | 4.1.4                 | 29             | .75          |
|   | 16307             | bT1                         | 1                | 77.0         | 74.6                  | .15            | • 6 5        |

| Report 4735 | Bolt Beranek and Newman, | Inc. |
|-------------|--------------------------|------|
|-------------|--------------------------|------|

### PERSONNEL NUISE EXPOSURE AND IMPACT

#### ALL SHIPS

|   | GRADE                | GRADE<br>DESCRIPTION | NU. GF    | -           | LeVEL  | LAILY        | Nulse Buse   |
|---|----------------------|----------------------|-----------|-------------|--------|--------------|--------------|
|   | CODE                 |                      |           |             | ,,,,,  | 712          |              |
|   | 10306                | pT1                  | 1         | 70.1        | 74.9   | .19          | • 47         |
|   | <del>-103</del> 05-  |                      |           |             | 72.0   | ···· • • • 7 | • U7         |
|   | 10304                | bT i                 | 1         | 62.7        | 57.0   | . 30         | .71          |
|   | 10303                | oT1                  | ı         | 65.6        | 66.5   | .52          | <b>.</b> U.S |
|   |                      | ·                    |           | <del></del> |        | • > (-       | .60          |
|   | 10301                | ETI                  | Ž.        | 6Y.7        | 90.1   | . 46         | 6.34         |
|   | 10300                | eT1                  | 1         | ***         | H-W    | • 00         | 0.66         |
| · | 102 <del>0</del> 6   | <del></del>          |           |             |        | 77           | • 5 5        |
|   | 11205                | eTC                  | ì         | 60.4        | 02.4   | • 40         | دة.          |
|   | 10204                | ŁŤC                  | ī         | 3444        | 4444   | . 00         | <b>4.0</b> 0 |
|   | 16263                | eŦC                  | i         | 64.2        | e5     | . 47         | . 74         |
|   | 10202                | ь TC                 | <u> 1</u> | 16.4        | 17.4   | . 09         | .10          |
|   | 10201                | ьТС                  | -<br>1    | 91.4        | 9- a i | 1.42         | 2.04         |
|   | <del>- 10</del> 206- |                      |           |             | -      | 5 U (*       | v.00         |
|   | 16100                | c TCM                | ī         | 77.1        | 77.3   | . 17         | . 23         |

G-9

# APPENDIX H

Individual Noise Exposure Results for Each Ship Using Sub-area Average Noise Levels

## PERSUNNEL NUISE EXPUSURE AND IMPACT

THRESHOLD LEVEL = OU.L ULA B-MR PERMISSIBLE LEVEL = 90.0 LEA EXCHANGE RATE

| <br>GRADE<br>CODE          | GRADE<br>DESCRIPTION                   | NU. OF<br>Pers. | JUUNU<br>MEAN     | LEV.L<br>H.L. | LALLY<br>MLAI- | Nolse pus. |
|----------------------------|----------------------------------------|-----------------|-------------------|---------------|----------------|------------|
| <br>                       |                                        |                 |                   |               |                |            |
| 60200                      | LTJG                                   | 1               | /1.1              | 76.7          | • 07           | • 44       |
| 26760                      | nhfa                                   | 1               | 81.6              | 64.0          | . 1            | ٤4.        |
| <br><del></del>            |                                        |                 |                   |               |                | . 17       |
| 20800                      | MMEN                                   | 1               | 67.0              | 56.5          | • 3 }          | • 57       |
| 20501                      | hM3                                    | 1               | 91.9              | <b>64.</b> 0  | -51            | •43        |
| <br>— <del>~2</del> 6566 — |                                        |                 | £ • ¢ <del></del> |               | 300            | .12        |
| 20401                      | hir.2                                  | 1               | 63.4              | 64.7          | .45            | • 40       |
| 26460                      | nm2                                    | 1               | 14.8              | 71.5          | .12            | .17        |
| <br>                       |                                        |                 | <del> +++</del> 2 | <del></del>   | 1.vc           | 1.13       |
| 20360                      | nn1                                    | 1               | とつ。い              | 62.4          | • 50           | • 5 3      |
| 16762                      | bIFA                                   | 1               | 90.3              | 41.0          | 1.14           | 1.19       |
| - 10761                    | · offer                                | 4               | 57.5              | つきょせ          | • 54           | . 54       |
| 16766                      | ETFA                                   | 1               | () و 4 ن          | ن و دخ        | • 44           | • 511      |
| 11662                      | ETFA                                   | 1               | 31.1              | 00            | 4              | • 30       |
| <br>                       |                                        |                 | <del></del>       |               | t-5            | • 25       |
| 10600                      | LTFN                                   | Ī               | 62.5              | ೨೮ ಕನ         | . 54           | •59        |
| 16500                      | eT3                                    |                 | 04.0              | 83.6          | .43            | 4          |
| <br>10403                  | —————————————————————————————————————— |                 |                   | ~~00.0        | 763            | • 04       |
| 16402                      | ŏ12                                    | ī               |                   | تا . دنا      | 1.17           | 70         |
| 10461                      | tT2                                    | <u>.</u>        | · <del>-</del>    | 62.4          | 445            | •>1        |
|                            |                                        | <b>.</b>        |                   |               |                | ./e        |

### PERSUNNEL NUISE EXPLIENC AND IMPACT

and the second s

THRESHOLD LEVEL = 80.0 DEA 8-MK PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE

## FF-1065 USS STEIN

|                                       | GRADE                  | GRADE                 | NU. UF      | SUUNU LEVE       | _                                     | Nolse bus     |
|---------------------------------------|------------------------|-----------------------|-------------|------------------|---------------------------------------|---------------|
|                                       | CODE                   | DESCRIPTION           | PEKS.       | MLAN N.C         | • MEAN                                | P             |
|                                       | 50562                  | LN3                   | 1           | *414 <b>44</b> 1 | <b>*</b> .00                          | . 6.00        |
|                                       | 50501                  | EN3                   | 1           | 2444 AN-1        | <b>#</b> .00                          | Unic          |
|                                       | <del>&gt;+&gt;++</del> | — <del>th</del> 3———— |             | - 4644 -464      | <b>€</b>                              | 0 <b>. 00</b> |
|                                       | 5030C                  | LN1                   | i           | RAPA ARA         | # .UL                                 | 0.00          |
|                                       | 30261                  | <b>∤</b> A            | 1           | 8344 A44         | ¥ .00                                 | しゅごし          |
| · · · · · · · · · · · · · · · · · · · | <b>-</b>               |                       |             |                  | 1 .36                                 | • 3 C         |
|                                       | 30100                  | FN ·                  | 1           | 67.2 bc.         |                                       | و ج           |
|                                       | 20002                  | MMFN                  | 1           | 94.5 45.         | 4 1.67                                | 4.10          |
|                                       | - Libul -              |                       |             | <del></del>      | 51.15                                 | 1.04          |
|                                       | 20600                  | MMEN                  | 1           | 67.7 41.         |                                       | 1.10          |
|                                       | 20505                  | nn3                   | 1           | 50.U by.         | ٠ . /5                                | .91           |
| =                                     | -26564                 | - <b>** K 3</b>       | 1           | 74.0 74.         | 0 1.40                                | 2.74          |
|                                       | 20503                  | nms                   | 1           | L3.0 54.         |                                       | . 44          |
|                                       | とじろしと                  | nm3                   | 1           | 4 40 .           |                                       | 4.64          |
|                                       | <del>~~~&gt;(+1</del>  |                       |             | <del></del>      | £36 t                                 | 1.04          |
| **                                    | 20500                  | mm3                   | 1           | 70.0 77.         | t .14                                 | . 4           |
|                                       | 20402                  | nnz                   | 1           | 26.7 64.         | 0 . c4                                | • 45          |
|                                       | -26461                 |                       |             |                  | b iscl                                | 1.40          |
|                                       | 20400                  | nm2                   | 1           | 67.5 YA.         |                                       | 1004          |
|                                       | 20302                  | nnl                   | 1           | 14.0 61.         |                                       | • <b>3</b> 0  |
| <u></u>                               | -56361                 |                       |             | 4114 76.         | 5 1.30                                | 1.41          |
|                                       | 20300                  | nn1                   | 1           | 67.0 50.         |                                       | • 5 3         |
|                                       | 20200                  | MriC                  | 1           | ***              | <b>⊌ .</b> ∪€                         | 0.00          |
|                                       | <del>-1</del> 6761     |                       |             |                  | · · · · · · · · · · · · · · · · · · · | . 5 3         |
|                                       | 10700                  | ŁTFA                  | 1           | 67.3 OY.         | 3 .04                                 | . 41          |
|                                       | 10662                  | LTFN                  | 1           | 55.4 Eu.         | دد. ه                                 | . 6 3         |
|                                       | <del>-106</del> 61     |                       |             | - 40.4 70.       | خ <u>ن</u> ن                          | . ž4          |
|                                       | 16600                  | oten                  | 1           | 40.3 46.         | 5 i.64                                | 1.40          |
|                                       | 10502                  | eT3                   | 1           | 41.6 41.         |                                       | 1.44          |
|                                       | <u> </u>               |                       | <del></del> |                  | y 17                                  | • 62          |
|                                       | 10500                  | <b>6T3</b>            | 1           | 92.0 44.         |                                       | 4.73          |
|                                       | 10460                  | bT2                   | 1           | £7.3 84.         | 4 .64                                 | . 44          |
|                                       | 14304                  |                       |             | -01.6 00.        |                                       | . 74          |
|                                       | 10200                  | υTC                   | 1           | .0.5 65.         | -                                     | • : 4         |

## PÉRSUNNEL NUISE EXPUSURE AND IMPAUT

THRESHULD LEVEL = OU.U DEA 6-HR PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

# FF-1084 USS CANDLESS

| • | GRADE             | GRADE       | NL. LF      | 200NU L     |                |                 | NULSE DUSE |
|---|-------------------|-------------|-------------|-------------|----------------|-----------------|------------|
|   | CODE              | DESCRIPTION | PERS.       | MEAN P      | 1.6.           | MEAN            | H.L.       |
|   | 60202             | LTJU        | 1           | 72.1        | 79.4           | •∪6             | د ۱۰       |
|   | 60201             | LT JG       | 1           |             | 32.0           | • < t           | .41        |
|   |                   |             | <del></del> |             | 50.2           | 44              | .59        |
|   | 601CÛ             | LT          | 1           | 72.1        | 72-4           | • U t           | .13        |
|   | 56501             | EN3         | i i         | 44.8 4      | 10.1           | 1.75            | 3.00       |
| _ | <del></del>       |             |             |             | 17.4           |                 | 3.7t       |
|   | 50300             | EN1         | 1           |             | 16.4           | 3.52            | 5.55       |
|   | 46500             | EH3         | 1           | 15.0        | 15.5           | - 12            | .13        |
|   | <del>46486</del>  | t-#2        |             |             | ٠ <u>٠</u> - ا | 1.ie            | 1.70       |
|   | 40200             | E MC        | 1           | ٤4.3        | 13             | •90             | 4026       |
|   | 30300             | FK          | 1           | 14.2 7      | 17.5           | 1               | •1c        |
|   | ·~\$6.165 ···     |             | <u>1</u>    | #7.1 i      | TU . 4         | . 04            | .07        |
|   | 30101             | F.N.        | 1           | ت دودن      |                | • 54            | ٠٤٤ .      |
|   | 30100             | FN          | 1           | ಕ⊍•೮ 8      | 16.0           | 5               | 1          |
|   | ze760             | <del></del> | <del></del> | <del></del> | 7.6            | .77             | . 70       |
|   | 20603             | MMFA        | 1           | 65.63       | 1.1            | •52             | 7          |
|   | 20062             | MMEN        | 1           | 71.6        | 4 . 4          | . 00            | • 4 1      |
|   |                   |             |             | <del></del> | 12-30          |                 | · 1.32     |
|   | 20000             | MMFn        | 1           | 65.1 4      | 10.2           | . 17            | 4.03       |
| • | 20504             | MM3         | 1           | 05.7        | L . Z          | . 55            | .59        |
|   | <del></del>       |             |             |             | · • • •        |                 | . 5 2      |
|   | 20562             | nn3         | 1           | ნს.ე ბ      | 7.5            | • <b>&gt;</b> 8 | . 64       |
|   | 26561             | mn3         | 1           |             | 10.1           | . 43            | .14        |
|   | <del>20566</del>  |             | <del></del> |             | 7.4            |                 | .46        |
|   | ∠0401             | MMZ         | 1           | ***         | M 44           | . 60            | • 4 3      |
|   | 20400             | MMZ         | 1           | ***         | 444            | • <b>6</b> 0    | • U 4      |
|   |                   | bŦFA        |             |             | 0 .4 -         |                 | ·ti        |
|   | 10700             | cTfA        | 1           | 07.4        | 16.3           | .70             | 4.04       |
|   | 10606             | LTFN        | 1           | 63.4        | り。し            | . 40            | • >0       |
|   | <del>-16665</del> |             |             |             | · · · · ·      |                 | 96         |
|   | 10604             | EIFN        | 1           | 79.4 7      | 7.7            | • 4 3           | . 24       |
|   | 10663             | DTFN        | 1           | 02.8        | . J . 5        | . 37            | -41        |
|   | 10642             | elfn        | <u>_</u>    |             | 4              |                 | وهو        |
|   | 10601             | LTFN        | 1           |             | 5.0            | . 45            | •56        |
|   | 10600             | ETFN        | 1           | 02.5        | 4.0            | 7               | .47        |
|   | 16561             |             |             |             | 7.0            |                 | - · · ·    |

1.

#### PERSUNNEL NUISE EXPUSURE AND IMPACT

## FF-1084 USS CANDLESS

| <br>          | <del></del> -        |                 |      |               |               |                    |
|---------------|----------------------|-----------------|------|---------------|---------------|--------------------|
| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. ÜF<br>Pers. |      | Livil<br>W.L. | UMILY<br>PEAN | NU150 0050<br>h.C. |
| 10500         | ьТ3                  | 1               | ٥٠٤٥ | 65.0          | . 35          | • ⊅ ∪              |
| 16400         | cT2                  | 1               | 01.7 | 26.3          | . 32          | . 34               |
| <br>16360     |                      |                 |      |               | ·· • • 1      | . o i              |
| 10261         | ETC                  | 1               | 19.8 | <b>د. د</b> د | . 24          | . 27               |
| 16200         | οTC                  | 1               | 74.5 | 11.4          | •12           | .17                |
|               |                      |                 |      |               |               |                    |

#### PERSUNNEL NUISE EXPUSERL AND INFACT

THRESHULD LEVEL = 50.0 LDA

5-HK PEKHISSIBLE LEVEL = 90.0 LDA

EXCHANGE KATE

#### FF-1090 USS AINSWORTH

| <br>GRADE<br>CODE             | GRADE<br>DESCRIPTION | NÜ. UF<br>PĒRJ. | SUUNU       | h.L.        | MLAN         | Noise dose |
|-------------------------------|----------------------|-----------------|-------------|-------------|--------------|------------|
| 60100                         | LT                   | 1               | 73.0        | 40.0        | 1.05         | ۷.44       |
| 40601                         | EMFN                 | 1               | 01.0        | 6.60        | . 11         | .41        |
| <br><del>40</del> 666         |                      |                 | せり•も        | <del></del> |              | •₽⊅        |
| 46500                         | ŁM3                  | 1               | 61.6        | 5 • د ت     | . 31         | .41        |
| 20700                         | PIME A               | 1               | 14.6        | 64.7        | - 64         | .31        |
| <br>                          |                      |                 | 74.0        | ~~71.7      | 12           | .15        |
| 26601                         | MMFN                 | 1               | 61.6        | 6.63        | 1د •         | .41        |
| 20600                         | MMFN                 | 1               | 67.9        | 50.3        | .14          | .74        |
| <br><del>205</del> 02         |                      | <u>t</u>        | <del></del> | <del></del> | 1.56         | E4.3       |
| 20501                         | hh3                  | 1               | 60.6        | 25.5        | .63          | •02        |
| 20500                         | mm3                  | 1               | 90.0        | 41.0        | 1.09         | 1.24       |
| 24462                         | - 2 mmと              | ·· <b>1</b>     | 66.6        | ಕರ.೨        | ده.          | • 7.4      |
| 20461                         | rim 2                | 1               | c 3 • 4     | 65 .i       | .46          | • 5 6      |
| 26400                         | hn2                  | 1               | .7.0        | 21.9        | . 71         | . 13       |
| <del>1</del> 67 <del>83</del> |                      |                 |             | ・・セラ・ラー     | ······       | . 52       |
| 10702                         | bTFA                 | ì               | 62.0        | 63.7        | . 36         | .42        |
| 10701                         | ETFA                 | 1               | 04.7        | C. U.S      | • <b>⊅</b> ∪ | .61        |
| <br>                          | bff4                 |                 | 77.3.       |             |              | . 47       |
| 10600                         | bTFN                 | 1               | <b>53.9</b> | ರಂ.ಪ        | . 43         | • > 5      |
| 10500                         | bT3                  | 1               | 61.5        | 23.4        | . 31         | .40        |
| <br><del>10400</del>          |                      | <u>_</u>        | 7.00        | c3          |              | . 41       |
| 16200                         | вТС                  | . 1             | 64.7        | د و دع      | .46          | .74        |

## PERSONNEL NOISE EXPOSURE AND IMPACT

THRESHOLD LEVEL B-MK PERMISSIBLE LEVEL = 90.0 DBA EXCHANGE KATE - TO UTA

## FF-1091 USS MILLER

| GRADE<br>CODE     | GRADE<br>DESCRIPTION | Nu. Uf<br>PERS. | UNUUZ<br>MABRI | Holo.                | _           | Nulse buse |
|-------------------|----------------------|-----------------|----------------|----------------------|-------------|------------|
| 60200             | LTJC                 | i               | 10.0           | 71.4                 | - 14        |            |
| 60100             | LT                   | 1               | 74.4           | 70.1                 | .11         | • 1.7      |
| <del>-463€0</del> |                      |                 |                | **                   | • 🕶 🖰       | じ・むし       |
| 20661             | MMFN                 | L.              | 40.0           | 93.3                 | iole        | よっちゃ       |
| 26666             | MMFN                 | 1               | 66.5           | 4- +1                | .61         | ic         |
| -z0401            |                      | <u>+</u>        |                | 40.0                 | 40          | 1.00       |
| 20400             | 682                  | 1               | 04.3           | 46.6                 | . 44        | 1 · 30     |
| 26360             | nmi                  | 1               | 67.0           | 00.6                 | .71         | • 02       |
|                   | -nnc                 | ·               | -y1.1-         | 44.0                 | 1.10        | 1.75       |
| 16762             | LTFA                 | ì               | 50.0           | 46.3                 | دی.         | 4.30       |
| 10761             | ETFA                 | 1               | 61.9           | 45                   | .75         | 1.00       |
| £6760 ·           | - 51th               | · 🗼             | E 7 . 9        | 24.4                 | . <u></u> t | .44        |
| 16067             | LTFN                 | L               | 7              | 46.0                 | 1.19        | 2.43       |
| 10666             | otte                 | ì               |                | 00 · 4               |             | ا ۵ و      |
| 16665             |                      |                 |                | ~- <del>67</del> .7. |             | • 40       |
| 16664             | ETFN                 | i               |                | n= . 1               | .40         | .51        |
| 10603             | OTEN                 | 1               | 64.0           | 71.4                 | . 94        | Loca       |
| -14665            |                      |                 |                | 0000                 | 5           | •55        |
| 1060i             | uTFR                 | <b>.</b>        | 80.4           | 80.0                 | .05         | و ۲ و      |
| 10000             | BTFN                 | 1               | じょう            | bu                   | .41         | • >-       |
| <del>-10561</del> |                      | <del></del>     | · +1.44 .      | ್ ಇದ ಕಲಿ             | • 60        | ./t        |
| 10500             | έľa                  | 1               |                | 4.63                 | .40         | .51        |
| 16462             | ωTZ                  | 1               | 61.6           | 44                   | .04         | 4.06       |
| -10461            |                      |                 | - <del></del>  | 42 . 4               |             | 4.40       |
| 10406             | ET2                  | 1               | 09.4           | 46.4                 | .44         | 4.40       |
| 10361             | <b>511</b>           | 1               | 07.5           | 44.0                 | . 70        | 1.14       |
| - 10300           | T1                   | <del></del>     |                |                      |             | • = =      |
| 10210             | ETC                  |                 | 06.0           | 4001                 | . 54        | 4.54       |

## PERSUNNEL NUISE EXPUSIBLE AND ITERALT .

THRESHULU LEVEL = 60.0 00A

8-Hk PEKMISSIBLE LEVEL = 90.0 00A

EXCHANGE KATE = 5.00A

## FF-1097 USS MOINESTER

|     | GRADE               | GRADE       | NU. OF                                 | SOUND LEVEL                                   | LAILY   | NUISE DUS. |
|-----|---------------------|-------------|----------------------------------------|-----------------------------------------------|---------|------------|
|     | CODE                | DESCRIPTION | PEKS.                                  | MEAN H.L.                                     | MEAR    | n.i.       |
|     | 40566               | EM3         | 1                                      | 10.9 70.3                                     | 10      | • £ Ü      |
|     | 40400               | EM2         | 1                                      | 14.0 61.4                                     | 4       | • 3:-      |
|     | <del>4(*3</del> t:0 |             | ······································ |                                               |         | .47        |
|     | 20702               | MMFA        | 1                                      | ٥٠٠٥ . ١٥٠٥                                   |         | .44        |
|     | 20761               | MMFA        | 1                                      | 01.4 03.1                                     | 1 .24   | .43        |
| -   | <del>20</del> 766   |             | · · · · · · · · · · · · · · · · · · ·  | t/.v tt.t                                     | . tt    | . 5 3      |
|     | 20504               | hm3         | 1                                      | -3.8 EU.2                                     | : •43   | • > 4      |
|     | 20503               | nn3         | 1                                      | 70.2 62.6                                     | 20      | · L'3      |
|     | <del>zt:5t</del> z  |             | <del></del>                            | 41.0 42.4                                     | 1.15    | 1.49       |
|     | 20501               | nns         | 1                                      | 64.4 65.4                                     | . 44    | 30.        |
|     | 20500               | nn3         | 1                                      | 1. ده ۱. ده                                   | .40     | .44        |
|     | 26460               |             | 1                                      | to.1 59.3                                     |         | .41        |
|     | <b>2030</b> 0       | nm1         | i.                                     | idel took                                     | ا د و   | .51        |
|     | 26260               | nnC         | 1                                      | 60.0 JU.5                                     | 55      | • 04       |
|     | 1676 <del>0</del>   |             |                                        | -44.0 47.6                                    | 1.69    | 2.44       |
|     | 10603               | cTFN        | 1                                      | 41.7 46.0                                     |         | 1.41       |
|     | 10602               | ETFR        | 1                                      | 95.1 90.1                                     | . ¿. 34 | 3.09       |
| - ~ | 10661               | <del></del> | <del></del> : <u></u> <u>t</u>         | 73.7 75.6                                     | 1.00    | 2.15       |
|     | T0900               | ETFN        | 1                                      | 99.5 94.3                                     | 1.08    | 1.04       |
|     | 16563               | 6T3         | 1                                      | 46.0 42.0                                     |         | 1.41       |
|     | 10502               | <del></del> |                                        | ···· 5484 · · · · · · · · · · · · · · · · · · | 48      | 1.41       |
|     | 10501               | tΤά         | 1                                      | 90.1 90.3                                     | 2.04    | 2.41       |
|     | 10500               | t T u       | 1                                      | 53.4 94.5                                     | 1.01    | 4.00       |
|     |                     | <del></del> | <del></del>                            | ·-· 40 • 4 ·· 44 • 4                          |         | 1.47       |
|     | 10400               | LT2         | ì                                      | 70.8 Your                                     |         | 1.66       |
|     | 10300               | ET1         | 1                                      | 45.d 10                                       |         | 9.15       |
|     | <del></del>         | <del></del> | <del></del>                            |                                               |         | 3.63       |

\$ to 10

#### PERSUNNEL NUISE EXPUSORE AND INFACT

THRESHULD LEVEL = SU.C JUA b-Hk PERHISSIBLE LEVEL = 90.C JUA EACHANGE KATE

## FF-1094 USS PHARRIS

| GRADE                  | GRADE                   | NU. UF                           | _                                      | LEVEL                 |              | 40125 DC20   |
|------------------------|-------------------------|----------------------------------|----------------------------------------|-----------------------|--------------|--------------|
| CODE                   | DESCRIPTION             | PERS.                            | MEAN                                   | h.L.                  | MEAR         | m.L.         |
| 50300                  | ENI                     | 1                                | ***                                    | ****                  | • • 0        | 0.00         |
| 40700                  | LMFA                    | 1                                | 74.1                                   | 74.6                  | . 11         | .14          |
|                        | <del></del>             | <u>1</u>                         |                                        |                       | •66          | 11.6 U U     |
| 40500                  | ER3                     | 1                                | 14.7                                   | 72.0                  | • 12         | .14          |
| 40460                  | EMZ                     | 1                                | 14.3                                   | 74.6                  | . 43         | . 4          |
| <del> 3</del> 0166 ··- |                         | · 1                              | 06.7                                   | 53.5                  | • 36         | • 4 3        |
| 20602                  | hmEN                    | 1                                | 64.4                                   | 4. o.c                | . 42         | 4.02         |
| 20601                  | MMEN                    | 1                                | 66.0                                   | 61.5                  | 1            | .69          |
| <del>-20</del> 606     | - <del></del>           | ·· · · · · · · · · · · · · · · · | ・~セク・ク                                 | e1.3                  | .54          | • 50         |
| 26507                  | hmo                     | 1                                | 60.4                                   | 44.4                  | . 51         | iost         |
| 20566                  | MM3                     | 1                                | £7.3                                   | U'1 a '7              | • <b>t</b> 5 | • 9 c        |
| 26565                  | <b>新科</b> 多             | 1                                | 61.5                                   | 64.4                  | • <b>e</b> 5 | • 45         |
| 21514                  | mm3                     | 1                                | 24.7                                   | 4 7                   | . 95         | 1.19         |
| 20563                  | Prints                  | 1                                | 20.1                                   | 80.9                  | • <b>၁</b> દ | • 60         |
| 2456e ·                |                         |                                  | ······································ | - <del></del>         | . 75         | .76          |
| 20501                  | nn3                     | 1                                | 16.5                                   | 74 . 4                | . UY         | • • 4        |
| <b>2</b> (500          | mm3                     | 1                                | ***                                    | ***                   | .00          | <b>∪.</b> 05 |
|                        |                         | <b>1</b>                         | 61.5                                   | 67.0                  | . 64         | • 47         |
| 20400                  | nnz                     | 1                                | 04.7                                   | 76.7                  | •46          | 1.10         |
| 20366                  | mml .                   | ì                                | ÷7.4                                   | 6/.6                  | . 70         | •74          |
|                        | <del></del> 8TFK        | 1                                | ··· <del>bu</del> al                   | 400                   | - 1.02       | وومد         |
| 106(1                  | 6TFK                    | 1                                | 46.3                                   | 41.1                  | 1.65         | 1.15         |
| LUOCU                  | BTFK                    | 1                                | 90.1                                   | 46.4                  | 1.02         | 1.13         |
| iot7                   |                         |                                  | <del></del>                            | -4E = E               |              | 2.35         |
| 10000                  | DTFN                    | 1                                | 54.4                                   | 46.6                  | . 44         | 2.30         |
| 10665                  | ETFN                    | 1                                | 84.4                                   | 46.6                  | • 49         | 1.35         |
|                        | <del></del>             |                                  |                                        | ~- <del>'7</del> 6 06 | • 99         | 1.35         |
| 10603                  | ŁTFN                    | 1                                | 40.2                                   | 44.0                  | 1.05         | 1.15         |
| 16662                  | bTFN                    | 1                                | 64.4                                   | 46.66                 | • 44         | 1.35         |
| 10061                  | <del></del>             | <del></del>                      |                                        |                       | . 63         | 4 - 44       |
| 16660                  | bTFN                    | 1                                | c 9 . 5                                | 4006                  | • 40         | 1.65         |
| 10565                  | b <b>T</b> 3            | 1                                | 90.1                                   | 92.0                  | 1.61         | 1.47         |
| 70205                  | <del></del> <del></del> | 1                                |                                        |                       | 51           | .75          |
| 10501                  | c T 3                   | 1                                | とりゅう                                   | 46.02                 | . 44         | 1.35         |
| 10500                  | LT3                     | 1                                | 50 . i                                 | 42.0                  | 1.01         | 1.47         |
| 104C1                  | 612                     |                                  | ئے و ن وال                             | وي ن وي               | 1-03         | 4.05         |

and the state of t

| Report | 4735 |
|--------|------|
|--------|------|

## Bolt Beranek and Newman, Inc.

#### PERSUNNEL NUISE EXPUSURE AND IMPAUL

THRESHULD LEVEL = 80.0 LOA 8-HK PERRISSIBLE LEVEL = 90.0 LOA EXCHANGE RATE = 5 DEA

## FF-1094 USS PHARRIS

| GRADE<br>CODE     | GRADE<br>DESCRIPTION | NO. OF<br>PERS. | SUUND       | LLViL<br>hoio | DAILY I | Nu1Sc 2057 |
|-------------------|----------------------|-----------------|-------------|---------------|---------|------------|
| 10460             | ET2                  | ı.              | 54.4        | 90.1          | • ५४    | 1.01       |
| 10301             | eT1                  | 1               | 90.2        | 4003          | 1.02    | 1.65       |
| <del>1</del> 0306 |                      | 1               | ·· 71.60 ·· | 73.0          | .07     | • 64       |

H-9

## PERSONNEL NUISE EXPOSERE AND IMPACT

THRESHOLD LEVEL = buou JOA b-HR PERMISSIBLE LEVEL = 90.0 JOA FRIMANIE RETE

## FF-1085 USS BEARY

| GRAD<br>CODE  |              | NU. OF<br>PERS. | PLAN  | LEVEL<br>N. U. | DAILY        | Nulse LUS.   |
|---------------|--------------|-----------------|-------|----------------|--------------|--------------|
| 6030          | 1 ENS        | 1               | 41.4  | 42.1           | 10.1         | <br>∠•√غ     |
| 6030          | U FNZ        | , i             | 01.4  | 66.3           | .70          | .79          |
| 6026          | 0LTJL        |                 | 34.0  | 71-b-          |              |              |
| 6010          |              | $\bar{1}$       | 84.7  | 64.9           | .46          | .49          |
| 5060          | U ENFR       | 1               | 47.0  | 100.9          | 2.44         | 4.50         |
| 50>0          | 0EN3         |                 | 100.2 | 163.4.         | 4-69         | E.CO         |
| 5030          | 0 EN1        | 1               | 96.5  | 101.7          | 3.27         | ت <b>ن</b> ا |
| 4060          | C EMFN       | ı               | 70.7  | 100.1          | z.tl         | 4.05         |
| 4650          | U EN3        |                 | 0.5.6 |                |              |              |
| 4646          | 0 EM2        | ī               | 64.2  | 46.3           | • 64         | 1.3c         |
| <b>3</b> C 20 | 44 0         | 1               | 40.4  | 100.1          | 2.61         | 4.00         |
| 3010          | 0 FR         | <b>1</b>        |       | - 92.4         | - 54         | 2024         |
| 2696          | 1 nm         | 1               | 61.3  | 640-           | .64          |              |
| £1.4C         | U rif        | 1               | じり。こ  | 61.4           | • 26         | .74          |
|               | C            |                 |       | 9.06           | 92           | 10           |
| 2060          | 2 mmfii      | 1               | 61.4  | 54.2           | • <b>3</b> 0 | .45          |
| 2000          | 1 MMFN       | 1               | 90.5  | 91.5           | 1.68         | 1.66         |
|               | C            |                 | 0.03  | 87.0 _         | 57           | .13          |
| 2050          | 3 hm3        | 1               | 67.5  | C7.1           | . 64         | • 50         |
| 2056          | è mm3        | 1               | 67.4  | 37.4           | •52          | .74          |
| 2050          | 1MM3         |                 |       |                | 1.32         | 4.55         |
| 2050          | 0 mm3        | 1               | 92.3  | 94.1           | 1.35         | 1.76         |
| 2040          | 2 nn2        | 1               | 46.4  | 103.6          | 3.92         | しっじる         |
|               | 1 <u>hH2</u> |                 |       | E0.3_          | 40           | اع.          |
| 2646          | e nm2        | 1               | 73.4  | 42.2           | 1.00         | 4.00         |
| 2020          | ·            | i               | 43.1  | 45.6           | 1.53         | 6.27         |
| 1090          | 1£ I         | 1               |       | 54.5           | 1.14         | 4.00         |
| 1090          | C BT         | 1               | 04.0  | 91.5           | • <b>₹</b> 5 | 4.63         |
| 1070          | U STFA       | 1               | 44.0  | 44.5           | 1.12         | 1.55         |
|               | <u></u>      |                 | al.y  |                |              | 1.44         |
| 1056          | 5 bT3        | 1               | 41.6  | 101.6          | 2.06         | 4.57         |
| 1650          | 4 613        | <b>.</b>        | 46.2  | 43.7           | 1.36         | 1.01         |
| 1056          | 3 <u>613</u> |                 | 44.6  |                | 1.12         |              |
| 1050          | 2 ET3        | 1               | 63.2  | ٤7.9           | •54          | .74          |
| 1050          | 1 673        | 1               | :4.0  | 71.5           | • 56         | 1065         |
| 1056          | 013          | 1               |       | د م دو ۔۔۔     | 1.47         | 2.07         |

|                                        | _                                     |                      |                                                                                    |              |                                       | <del></del>   |                |               |           |
|----------------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------------------------|--------------|---------------------------------------|---------------|----------------|---------------|-----------|
|                                        | <del>-</del>                          | PEKS                 | UNNEL NO                                                                           |              |                                       |               |                |               |           |
|                                        |                                       | 6-H                  | KESHULU LEVEL = BU.L J.A<br>TK PERMISSIBLE LEVEL = 90.L J.A<br>JMANUE KATE = 3 JEA |              |                                       |               |                |               |           |
| ,                                      |                                       |                      | FF-1                                                                               | 085          | USS                                   | BEARY         |                |               |           |
|                                        | GRADE<br>CODE                         | GRADE<br>DESCRIPTION |                                                                                    |              | ٠ ڏ                                   | JUUNU<br>Mean | LCVLL<br>No.   | UAILY<br>MEAN | MU15E ULS |
|                                        | 16361<br>10300                        | 511<br>511           | _                                                                                  |              |                                       |               | 90.7<br>91.4   |               | 1.10      |
|                                        |                                       |                      |                                                                                    |              |                                       |               |                |               |           |
|                                        |                                       |                      |                                                                                    |              |                                       |               |                |               |           |
|                                        | · · · · · · · · · · · · · · · · · · · |                      |                                                                                    |              | · · · · · · · · · · · · · · · · · · · |               |                |               |           |
|                                        |                                       |                      |                                                                                    |              |                                       |               |                |               |           |
|                                        |                                       |                      |                                                                                    | <del>-</del> |                                       |               |                |               |           |
|                                        |                                       |                      |                                                                                    |              | ···                                   |               |                |               |           |
|                                        |                                       |                      |                                                                                    |              |                                       |               |                |               |           |
|                                        |                                       |                      | ·                                                                                  | ·            |                                       |               |                |               |           |
|                                        |                                       |                      |                                                                                    |              |                                       |               |                |               |           |
|                                        |                                       |                      |                                                                                    |              |                                       |               | and the second |               | -         |
| agarain (a c. China di Indidigia) (St. |                                       |                      |                                                                                    |              |                                       |               |                |               |           |
| <del></del>                            |                                       |                      |                                                                                    |              | ·                                     |               | <del></del>    | <del></del>   | · ·       |
|                                        |                                       |                      |                                                                                    |              |                                       | <u> </u>      |                |               |           |
|                                        |                                       |                      |                                                                                    |              |                                       |               |                |               |           |

### PERSUNNEL NUISE EXPOSURE AND ITEMOT

THRESHOLD LEVEL = 50.0 LDA 5-mr PERMISSIBLE LEVEL = 90.0 DDA EXCHANGE RATE = 5 DDA

## FF-1092 USS HART

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NG. UF<br>PEK.s. | NA34    | Livil<br>H.C. | FIL MA                                       | หม่งรับ เมื่อ<br>พ.ป. |
|---------------|----------------------|------------------|---------|---------------|----------------------------------------------|-----------------------|
| 60200         | LTJG                 | 1                | 17.5    | 21 • A        | . ـ غ                                        | .21                   |
| 21666         | nnCo                 | 1                | 64.2    | 76.05         | . 24                                         | 1.44                  |
|               |                      |                  |         |               |                                              | 4                     |
| 20700         | MMÉA                 | 1                | 43.4    | 44.7          | 1.66                                         | 1.91                  |
| 20662         | MEN                  | 1                | 0.63    | 35.2          | ةد.                                          | •51                   |
|               | AMEN                 |                  |         | 4             |                                              |                       |
| 20666         | MMÉN                 | 1                | 40.5    | 40.4          | 1.07                                         | ڏه ه                  |
| 20564         | nn3                  | 1                | 40.2    | 43.0          | 1.03                                         | 1.02                  |
|               | Eng                  |                  |         | tu_o_         |                                              |                       |
| 20502         | Emm                  | 1                | 65.7    | 40.0          | . 6 3                                        | 4.06                  |
| 20561         | mm3                  | 1                | 42.5    | 45.4          | 1.42                                         | 2 3                   |
| 205LU         |                      |                  | الأمديد | الأمامات      | a 40                                         | دة.                   |
| 11665         | t T + ts             | 1                | .3.4    | 63.2          | • 4 C                                        |                       |
| 16664         | LIFH                 | 4                | 7 . د ب | <b>UL .</b> U | . 42                                         | ذ ر و                 |
| 10663         | SIFN                 |                  | 44.0    | heal          | . 2. يد مـــــــــــــــــــــــــــــــــــ |                       |
| 10602         | LTFN                 | 1                | 80.5    | 40.7          | . 5 6                                        | 1.10                  |
| 10661         | bTfN                 | 1                | 65.2    | ا و د با      | . 51                                         | • <b>5</b> c          |
| 10600         | EIFN                 | 1                | _دمغنه  |               | <u> شنا مـــــــ</u>                         | 05                    |
| 16505         | ьT3                  | 1                | 10.5    | (1.7          | • 4 (                                        | .27                   |
| 10564         | £13                  | 1                | £5.5    | 01.7          | . 62                                         | .75                   |
| 10503_        | t.I.i                |                  |         |               | 4 نـــــــ                                   |                       |
| 10502         | c <b>T</b> 3         | L                | 69.5    | 91.0          | • 75                                         | 1.63                  |
| 10561         | bT3                  | Ī                | C4.0    | 41.4          | . 44                                         | /                     |
| 10509         | 13                   |                  | 4004    | C             |                                              |                       |
| 16461         | £12                  | 1                | 71.5    | 43.0          | 1.44                                         | 4.04                  |
| 10400         | ŁT4                  | 1                | 12.0    | 77.7          | .14                                          | 340                   |
|               | 11                   | <u>_</u>         |         | 66_6_         |                                              | .56                   |
| 10100         | o T Cri              | i                | 64.7    | 63.5          | .46                                          | در.                   |

## PERSONNEL NOISE EXPUSIONE AND INFACT

THRESHULD LEVEL # 80.0 JEA 8-MR PERMISSIBLE LEVEL = 90.6 USA

## FF-1081 USS AYLWIN

|   | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. ÚF<br>Pěkj. |                 | LLVEL<br>Note | DATLY<br>MLAN | No.ISE DUS: |
|---|---------------|----------------------|-----------------|-----------------|---------------|---------------|-------------|
|   | ot 301        | LNS                  | 1               | 7006            | 73.0          | ا الله الله   | . 4.24      |
|   | 60300         | ŁNS                  | 1               | 64.4            |               | . 46          | •51         |
|   |               |                      | <u>.</u>        |                 |               |               | • 24        |
|   | 60100         | LT                   | 1               | 46.4            | 90.0          | 1.13          | 4301        |
|   | 56600         | ENFN                 | 1               | 60.0            | 4.07          | • <b>t</b> 3  | 4.50        |
|   | 50500         | LN3                  |                 | 44.3            |               | 463           | .47         |
|   | 40300         | £ M 1                | 1               | 00.4            | 4.00          | . 65          | 4.15        |
|   | 20t05         | nnen                 | 1               | 65.5            | 67.4          | .52           | .76         |
|   | 2664          | maifa                |                 |                 | y_ +c         | الما ما الما  |             |
|   | 20603         | MMEN                 | 1               | c0.3            | 67.5          | . 60          | . 44        |
|   | 20602         | MMEN                 | 1               | 62.3            | 03.5          | . 34          | . 24        |
|   | 20061         | AAMA                 |                 | لا منځست        | -91           | . 65          | 1.34        |
|   | 26666         | nofin                | 1               | 67              | 70.00         | ال ن          | 4.00        |
|   | 20566         | hir 3                | 1               | 31.3            | 40.5          | .01           | 1006        |
|   |               | nrs                  |                 | دئه             | _4-6-4_       |               | نازها بيني  |
|   | 20504         | nn3                  | 1               | 46.7            | £4.0          | .63           | . 67        |
|   | 20503         | MM3                  | i               | 51.7            | 84.0          | . 32          | • 44        |
|   | 20502         |                      |                 | t7.s.           | Y             |               |             |
|   | 20561         | Emm 5                | 1               | 61.7            | 64.6          | . 32          | . 4 4       |
|   | 20500         | hn3                  | 1               | აა.7            | とり。し          | .63           | • 0 ?       |
|   | 20404         | br2                  | 1               | -61.3           | وميلا         | 6             |             |
|   | 20463         | hm2                  | 1               | 61.7            | 03.4          | 1             | ٠ ځ ٠       |
|   | 20402         | nr2                  | 1               | <b>د و با</b> ن | ču. b         | 7             | . 65        |
|   | 2.461         |                      |                 |                 |               | ذ. م          | -15         |
|   | 26460         | mm2                  | 1               | 65.5            | 00.0          | .52           | •55         |
|   | 20306         | nni                  | 1               | C.C.2           | 64.5          | .76           | • 43        |
|   |               | bIFN                 |                 |                 | قەمەكىي       |               | 36.i        |
|   | 10660         | LTFN                 | 1               | 74.5            | 45.4          | 1.41          | 2011        |
|   | 10505         | b13                  | 1               | 92.1            | 94.4          | 1.35          | 1.46        |
|   | 10564         |                      |                 |                 | 9446          | 1.64          | 4.24        |
| • | 10503         | LT3                  | 1               | 90.4            | 91.7          | 1.06          | 4.41        |
|   | 10502         | eT3                  | 1               | 90.4            | 41.7          | 1.06          | 4.27        |
|   | 10501         |                      | 1               | فورو            | ــ طمعطـــ    |               | 1.24        |
|   | 10500         | bT3                  | 1               | 92.1            | 44.4          | 1.35          | 1.40        |
| [ | 10400         | υTZ                  | 1               | 44.7            | 40.7          | 1.91          | دد.>        |
|   | 10340         | EI1                  |                 | ومؤسس           | 4             | . 77          | 4.40        |

#### PERSONNEL NOISE EXPOSENCE AND INFACT

## FF-1097 USS MOINESTER

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>Peks. | LIEAN<br>LIEAN  | LcveL<br>W.L. | DAILY<br>HE AN                          | No. ISE DOS. |
|---------------|----------------------|-----------------|-----------------|---------------|-----------------------------------------|--------------|
| <br>6t 4t/0   | LCCH                 | 1               | ***             | 4444          | •00                                     | €.0€         |
| 60300         | ENS                  | ì               | 06.7            | c4 • 7        | . 27                                    | . 4c         |
| <br>ocicu-    | I                    |                 | 4300            |               |                                         | دناه         |
| 50400         | LN2                  | 1               | 61.5            | 14            | . 64                                    | .07          |
| 50300         | EN1                  | 1               | 15.4            | 74.5          | - 14                                    | د ، ه        |
| <br>30102     | EN                   |                 | uu              | t-1           | 44                                      | .77          |
| 30101         | FN                   | 1               | 0.63            | 0             | •>0                                     | . 27         |
| 30100         | F N                  | 1               | <b>ღე</b> ⊕ მ   | <b>du .</b> ( | •50                                     | .57          |
| <br>£0703     | BRFA                 |                 |                 | i.7           | <b></b>                                 | .12          |
| 20702         | arth                 | 1               | 12.6            | 77.7          | . 14                                    | .10          |
| 20701         | nnf                  | 1               | 00.0            | z 1 . 7       | ・シシ                                     | .74          |
| 20700         | . ntiFA .            |                 | ومدع            | /             | • 22                                    | • 7 4        |
| 26067         | nic fin              | 4               | 14.5            | <b>6</b> 0    | د ے •                                   | • 43         |
| 26666         | er milita            | 1               | 12.7            | 3-07          | • <i>i</i> l                            | د ۹ •        |
| <br>          | snfn                 |                 |                 |               | 1                                       | ت فرم .      |
| 20604         | MMEN                 | 1               | 70.4            | 75.4          | . 15                                    | • 20         |
| 20663         | MMFN                 | 1               | シラ・サ            | 51.3          | .01                                     | .01          |
| <br>20602     | nrfh                 |                 | ده دعــــ       |               | ع د م                                   | دا.          |
| 20001         | MMFN                 | 1               | 14.5            | 80.05         | • 6 5                                   | • • 7        |
| 20600         | MMFN                 | ì               | 46.7            | 22.4          | • <b>3</b> ti                           | .43          |
| <br>ZESE6     |                      |                 | <b>&amp;_</b> _ | Liok -        |                                         | . 24         |
| 26565         | hM3                  | 1               | 61.4            | 6 4           | ∪ د •                                   | • 27         |
| 20504         | mm3                  | 1               | <b>64.</b> 3    | 55.7          | . 47                                    | • >>         |
| <br>20503     | nns                  |                 | <del></del>     |               | عد ــــــــــــــــــــــــــــــــــــ | .45          |
| 20502         | mms                  | 1               | 74.3            | ومنه          | د ع ه                                   | • 3 /        |
| 20501         | ne3                  | 1               | 06.1            | 0106          | • <b>⊃</b> ₹                            | • <b>U</b> ( |
| <br>20560     |                      |                 |                 | ا بلامانده    | 419                                     |              |
| 204Cl         | nm2                  | 1               | 84.8            | 02.3          | .40                                     | •52          |
| 20460         | nn2                  | 1               | cl.7            | ts.7          | . 16                                    | •46          |
| <br>          |                      |                 |                 |               | ti                                      | 74           |
| 26200         | mmC                  | 1               | 40.1            | 41.0          | 1.01                                    | 4.64         |
| 10061         | eTfk                 | 1               | 75.7            | 16.6          | . 14                                    | ٠ غ د        |
| <br>16866     | BIFE                 | 11              | Lock            |               | ء دـــــــ                              | فامت         |
| 10701         | ETFA                 | 1               | 70.4            | 12.05         | 7                                       | • 0 9        |
| 10766         | oTFA                 | 1               | 77.0            | 71.4          | . 15                                    | 4            |
| <br>16464     | LIFN                 |                 |                 | _ 1           | ذه م                                    | .14          |

and the second second

#### PERSONNEL NUISE EXPUSIBLE AND IMPAUL

THRESHULD LEVEL = 00.0 DER 6-HR PERMISSIBLE LEVEL = 90.0 DDA -EXCHANGE RATE = 5 DEA

## FF-1097 USS MOINESTER

| GR/<br>COI      |                                         | GRADE<br>SCRIPTION | 1 | Nu. UF | 2 המאח         | Levil    | UALLY          | Nolse bos |
|-----------------|-----------------------------------------|--------------------|---|--------|----------------|----------|----------------|-----------|
|                 | _                                       |                    |   | PENS.  | MEAN           | W. C.    | MLAN           | h.i.      |
| 106             | oC5 LT                                  | FN                 |   | 1      | 6 <b>7 •</b> U | 43.1     | ان و           | 1.55      |
| 100             | 064 ET                                  | + in               |   | 1      | 64.0           | 50.1     | . 44           | .77       |
| 10¢             | العــــــــــــــــــــــــــــــــــــ | FA                 |   | 1      | <del></del>    |          | عانية وبالمسيد |           |
| 106             | 502 ET                                  | FR                 |   | Ī      | 57.9           | 90.9     | . 14           | 1.12      |
| 106             | o01 ь1                                  | FN                 |   | 1      | 90.1           | 94.3     | 1002           | 1.51      |
|                 | .t.051                                  | Fx                 |   |        | 24-0           | ¥3-4     |                |           |
| 10:             | 207 E                                   | <b>13</b>          |   | ì      | 61.7           | 91.5     | .73            | 1.49      |
| 105             | 13 o)                                   | ` <b>3</b>         |   | 1      | 51.2           | 42.5     | 1.14           | 54        |
| 10:             | اهـــداه                                | 3                  | · | 1      | 20.9           |          |                |           |
| 105             | 04 b1                                   | 3                  |   | 1      | 41.1           | 65.4     | • 49           | •54       |
| . 105           | 1ع د0                                   | 13                 |   | ı      | 91.0           | 91.3     | 1.15           | 6069      |
| 10:             | اعـ چا                                  | i i                |   |        |                |          | - 4065         | 4.45      |
| 10:             | ان دار                                  | is                 |   | i.     | 74.5           | 7.01     | ونهم           | 4.43      |
| 105             | είο ε <mark>1</mark>                    | 3                  |   | 1      | 57.1           | 74.5     | .13            | 4064      |
| 4نانسات سال سال | لنسسادنا                                |                    |   |        | ندمهـــ        | <u> </u> |                |           |
| 104             | 02 LT                                   | 2                  |   | ī      | 94.0           | 90.1     | 1.75           | 3.64      |
| 104             | ici it                                  | .5                 |   | 1      | 91.5           | 42.7     | 1.64           | 4.14      |
| 144             | 00 - 51                                 | <u> </u>           |   |        | بكملاع         | <u></u>  | <b></b>        |           |
| 102             | .00 ь1                                  | ·c                 |   | •      | 16.0           | 12.1     |                | • 00      |

#### MERSUNNEL NULSE EXPUSURE AND IMPRICT

THRESHULU LEVEL 8-HR PERMISSIBLE LEVEL = 90.1 DDA EXCHANGE KATE

#### FF-1075 USS TRIPPE

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>Peks. | SUUNU<br>NE AN  | Holo     | DAILY            | Noise Lust |
|---------------|----------------------|-----------------|-----------------|----------|------------------|------------|
| 30300         | f k                  | 1               | c < - 1         | 64.6     | ٠.4              | . 48       |
| 20700         | MMFA                 | 1               | 67.1            | 57.0     | . 67             | .95        |
| 20662         | MAEN                 |                 | #7-1_           | byt      |                  | 95         |
| 20601         | MMFN                 | 1               | 10.3            | 54.7     | . 74             | ٠٧٤        |
| 20660         | hmfn                 | 1               | ٤9.9            | 41.7     | . 46             | 1.26       |
|               | MM3                  |                 |                 |          |                  | 1.15       |
| 20400         | nn2                  | ī               | ڌوڏي            | 83.1     | 96.              | •51        |
| 10760         | bTfA                 | 1               | 70.5            | 93.0     | 1.07             | 1.51       |
| 10eC1         | STFN                 |                 | 00-1_           | نوه بنوي | <del> 1</del> 77 |            |
| 10600         | bTFN                 | ī               | 01.5            | 90.0     | .71              | 1.01       |
| 10501         | ьТ 3                 | ī               | 40.5            | 43.0     | 1.07             | 1.51       |
| 10500 -       | 1.3                  | · 1             | ٨٠٠ ته          |          | 51               | •60        |
| 10462         | LTZ                  |                 | 70.0            | ٥٠ د ٠   | 1.07             | 1.51       |
| 10401         | ET2                  | ī               | 67.5            | ن و ر    | •/•              | 1.01       |
| 16400         |                      | i               | <u>t-a-a_</u> _ |          |                  |            |
| 10300         | oT1                  | 1               | 6245            | ರಿತ 🗸 🔾  | . 53             | .75        |

## APPENDIX I

Grade Average Noise Exposure Results for Each Ship Using Sub-area Average Noise Levels

Report 4735

Bolt Beranek and Newman, Inc.

PERSURNEL NUISE EXPUSUAL AND IMPACT AVERAGES

Service of the servic

THRESHULU LEVEL = 80.0 DEA 8-MK PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

| FF-1083 | USS | COOK |
|---------|-----|------|
|---------|-----|------|

| •                     |                      | A STATE OF THE PARTY OF THE PAR |               |               |         |                |  |  |
|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------|----------------|--|--|
| GRADE<br>CODE         | GRADE<br>DESCRIPTION | NL. OF<br>PERS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEAN<br>SUUNU | LEVEL<br>S.L. | BAILY N | 2***<br>7****  |  |  |
| 104                   | 514                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ 7.o         | ٥.4           | . 74    | -45            |  |  |
| ∠03                   | hml                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 1.0         | ತ 🕳 😉         | . 76    | .37            |  |  |
| te7                   | -tffa                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 5 . 3         | . 67    | . 15           |  |  |
| 106                   | bTFN                 | و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04.0          | د.5           | .45     | • £4           |  |  |
| 1(5                   | tT3                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64.0          | <b>⊍.</b> 0   | .43     | U • ÜU         |  |  |
| ~~~ <del>``````</del> | nn3-                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | L.D           |         | • 15           |  |  |
| 207                   | MMFA:                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04.0          | U . U         | 1د .    | 0.00           |  |  |
| 204                   | hm2                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.4          | C . 4         | . 27    | • 26           |  |  |
| <del></del>           |                      | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | √e5           |               | 23      | •1c            |  |  |
| 662                   | LT JG                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.1          | - • C         | .07     | <b>∪ • Ú</b> € |  |  |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |         |                |  |  |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAULS

THRESHULL LEVEL = 50.0 JOA 8-HR PERMISSIBLE LEVEL = 90.0 JOA EXCHANGE RATE = 5 JOA

## FF-1065 USS STEIN

| GRADE       | GRADE       | NU. UF      |      |      |           | NUISE OFFE |
|-------------|-------------|-------------|------|------|-----------|------------|
| CODE        | DESCRIPTION | PEK3.       | MEAN | S.L. | FIE AIN   | 2.0.       |
| 206         | MMFN        | 3           | 91.6 | 4.6  | 1.51      | • 50       |
| 165         | ET3         | 3           | 67.1 | 8.5  | . 43      | • 6 7      |
| <del></del> |             | <del></del> | 89.1 | 2.0  | 41        | 7          |
| Ž ( 3       | nnl         | ٤           | t6.4 | 6.0  | .75       | د د ٠      |
| 465         | hrs         | ė           | 66.1 | 5.1  | . 71      | . 45       |
|             |             | <u> </u>    | 07.3 | 0.0  | 4         | v • 00     |
| 107         | bTFA        | 2           | 67.2 | • C  | . 60      | • U C      |
| 301         | f N         | 1           | 87.2 | 0.0  | •68       | J. 06      |
|             |             |             | 07.2 | U.O  | •••       | 0.00       |
| 162         | aTC         | ī           | 8.03 | 0.0  | • 64      | 0.00       |
| 166         | ETFIN       | 3           | 04.0 | 7.0  | . 57      | • 44       |
| 36/2        | + #         | <u>.</u>    | 61.7 | u. Ü | .10       | • 4 4      |
| 464         | r.r.C       | 1           | 4444 | **** | • 6.6     | ( • ( ) (  |
| \$(3        | ENI         | Ī           | **** | **** | .00       | 0.66       |
| ·· 565      | rh3 ch3     |             | 4444 | ***  | • • • • • | 0.00       |

## PERSONNEL NUISE EXPUSURE AND IMPACT AVERAGES

## FF-1084 USS CANDLESS

| GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. OF<br>PEKs.                           | SUUND<br>MEAN | LEVEL<br>S.U. | DAILY  | NU152 UUS.  |
|---------------|----------------------|-------------------------------------------|---------------|---------------|--------|-------------|
| 503           | ENI                  | 1                                         | 44.1          | U . O         | 3.02   | . 5.30      |
| 505           | ÉN3                  | 2                                         | 45.5          | .4            | 2.15   | • £ C       |
| ·             |                      | <u></u>                                   | 41.1          | <b>0 - €</b>  | i.it   | v • uti     |
| 402           | EMÜ                  | 1                                         | 29.3          | J . O         | . 50   | 5 • 6 t     |
| 207           | MMFA                 | 1                                         | 86.2          | U . U         | .17    | 0.00        |
| 167 -         |                      |                                           | 05.4          | 2.7           | . > 5  | .29         |
| 206           | MAEN                 | 4                                         | 03.4          | 6.0           | • 55   | • 34        |
| 205           | かれら                  | 5                                         | 03.5          | 4.4           | .47    | •44         |
| 163           | <del></del>          | · · · · <u> · · · · · · · · · · · · ·</u> | 03.5          | 0.0           |        | U • 66      |
| 166           | DIFIN                | 7                                         | 06.4          | < · 1         | ۷ نو   | •11         |
| 104           | ET2                  | i                                         | 01.7          | u . U         | • 36   | v • U v     |
| 165           | tg                   | Ž.                                        | 00.0          | ١.٤           | • = 5  | • 14        |
| 301           | FR                   | -<br>د                                    | 17.5          | 4.4           | 7      | • 24        |
| 602           | LTJG                 | 5                                         | 13.8          | 0.1           | • £ t  | • 13        |
|               |                      |                                           | 77.1          | ٥. د          |        | .04         |
| 405           | EN3                  | ī                                         | 72.0          | 0.6           | .12    | <b>.</b>    |
| 303           | FK                   | <u> </u>                                  | 74.2          | U.O           | 1      | <b>6.00</b> |
|               |                      |                                           | 74.1          | U . U         | ·      | 0.00        |
| 204           | MM2                  | Ž                                         | ***           | 4444          | • 0 (1 | 0.00        |

#### PERSONNEL NGISE EXPUSURE AND IMPACT AVERAGES

## FF-1090 USS AINSWORTH

| GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. OF<br>FERS. | SUUND | LEVEL<br>S.u.     | MLAN         | NU15E UUS:<br>S.U. |
|---------------|----------------------|-----------------|-------|-------------------|--------------|--------------------|
| 601           | LT                   | 1               | 43.0  | U                 | 1.05         | <b>(</b> )         |
| 205           | mm3                  | 3               | 96.1  | 3.4               | 1.06         | •45                |
|               |                      | <b>3</b>        | 65.4  |                   | . 55         | .10                |
| 102           | aTC                  | 1               | 64.7  | 0.0               | . 48         | J • 00             |
| 106           | bTFN                 | 1               | 63.4  | J . 3             | .43          | 0.60               |
| <b>4</b> 66   |                      |                 | 0.td  | -Z . B            | . 43         | .16                |
| 107           | bTFA                 | 4               | 63.2  | 6.4               | -41          | .15                |
| 265           | MMEN                 | 3               | 01.4  | u • 5             | . 39         | • 34               |
| 164           | ·                    |                 | t2.t  | - <del>6</del> .0 | • <b>э</b> ŧ | υ∙∪ΰ               |
| 465           | LM3                  | 1               | ciet  | u . L             | .31          | t • 00             |
| 105           | ьтэ                  | 1               | 61.5  | 6.00              | 1د •         | 0.00               |
| ≥07           | MMFA                 | £               | 17.0  | ₩                 | . 4          | 0.69               |

A THE RESERVE

### PERSONNEL NUISE EXPOSURE AND IMPAUT AVERAGES

ThreSHULL LEVEL = 60.0 .5A b-Hk PERMISSIBLE LEVEL = 90.0 JUA 

## FF-1091 USS MILLER

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. OF<br>PERSO | SOUND<br>MEAN | 7.D.        | DALLY<br>NE AN | Nuls: 005.    |
|---------------|----------------------|-----------------|---------------|-------------|----------------|---------------|
| 202           | mmC                  | 1               | 91.1          | U . O       | 1.10           | 0.00          |
| 206           | MMFN                 | 2               | 64.7          | 1.6         | .47            | .26           |
|               |                      |                 | 69.4          | <b>~</b> 2  | 42             | ·52           |
| 104           | e T Z                | ٤               | 00.7          | 1.3         | •65            | .14           |
| 263           | mr1                  | 1               | c7.6          | U.C         | . 71           | 0.00          |
| 166           | o This               |                 | £7.0          | 2.7         | . 70           | ۰۷۵           |
| 103           | ŁT1                  | 2               | 67.2          | . 4         | 7              | . 04          |
| 167           | bTFA                 | £               | 65.9          | 4.3         | .63            | •3c           |
|               |                      |                 | 60.6          | 0.0         | tz             | €.60          |
| 165           | E <b>T</b> 3         | 2               | 85.2          | 4.6         | <b>د د .</b>   | .15           |
| 602           | LT Jo                | 1               | 76.0          | <b>υ.</b> υ | .14            | 0.00          |
| 64-1          | £1                   | 1               | 14.4          | 0.0         | . 11           | 4. • Cit      |
| 463           | L M l                | 1               | 4444          | <b>GRAE</b> | • C Ü          | ₩ <b>.</b> 50 |

#### PÉRSUNNEL NUISE EXPUSURE AND IMPAUT AVERIGES

THRESHULD LEVEL = BUOL DIA 6-HR PERMISSIBLE LEVEL = 90.00 DEA 

## FF-1097 USS MOINESTER

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>Pers. | SUUND<br>ME AN      | Level<br>Sobo | DEAL  | 7.00.<br>Mr125 Pr7: |
|---------------|----------------------|-----------------|---------------------|---------------|-------|---------------------|
| <br>102       | ьТС                  | 1               | 40.6                | ن و د         | ٤٠ ٤٤ |                     |
| 103           | bT1                  | 1               | 75.0                | JeU           | 2023  | 0.00                |
| <br>167       |                      | 1               | <del>'/</del> 4 . 5 | to a to       | 1.54  | 0.00                |
| 166           | ETER                 | 4               | 46.0                | ۷.7           | 1.25  | • 6 %               |
| 105           | ŁĪ۵                  | 4               | 46.5                | 6.4           | 1.44  | .40                 |
| <br>-1-04     |                      | ·-··            | ~ <del>5</del> 0.0  | د .           | 1.09  | • ( )               |
| 204           | HM2                  | 1               | ciel                | 6.0           | .17   | 0.00                |
| 202           | MMC                  | 1               | 69.0                | U . U         | • >>  | <b>0.0</b> 0        |
| <br>··· -265  |                      | <b></b>         | 3                   | 4 . 0         | . 5 ë | • jt                |
| 217           | BBEA                 | 3               | و و د ع             | 3.4           | . 42  | • £ U               |
| 403           | EMI                  | 1               | 03.2                | € • €         | . 39  | 0.00                |
| ·z (·3        | - MP ±               | i               | U 3 . 1             | ₩ • **        | • 26  | $Q \bullet Q_{0}$   |
| 4(4           | c 15 2               | 1               | 19.0                | ي ۾ ن         | . 4   | <b>0 a</b> € €      |
| 405           | EM3                  | 1               | 10.1                | 9 <b>. t</b>  | .16   | 0.00                |

and the state of t

#### PERSONNEL NUISE EXPLOURS AND IMPACT AVERAGES

THRESHOLD LEVEL # du.u JAA 8-HR PERMISSIBLE LEVEL # 90.0 JEA EXCHANGE RATE

## FF-1094 USS PHARRIS

| <br>-         |                      |                 |               |             |        |                    |
|---------------|----------------------|-----------------|---------------|-------------|--------|--------------------|
| GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. UF<br>PENS. | SUUNU<br>MÉAN | S.D.        | YLAU   | 2.0.<br>MU125 MU25 |
| 108           | ETFA                 | 3               | 90.2          | . 1         | 1.03   |                    |
| 104           | òT2                  | 2               | ¥0.0          | •4          | 1.00   | <b>د</b> نا ه      |
| <br>14i6      |                      | <del></del>     | & Ý • 8       | • 5         | 41     | • 05               |
| 165           | εTa                  | 4               | 68.6          | c . 4       |        | • 65               |
| 204           | nn2                  | 2               | 8 6 • >       | 1.7         | . 63   | • 40               |
| <br><u></u>   |                      |                 | 07.4          | 0.0         | 70     | ₩.00               |
| <b>20</b> 6   | MMEN                 | 3               | 87.1          | 2.0         | . 69   | ۰ŹU                |
| 205           | mm3                  | ø :             | 85.6          | 5.9         | 7      | . 34               |
| <br>163       |                      | ··              | 80.6          | 13.6        | 5      | .57                |
| 3(1           | FN                   | 1               | 62.7          | 0.0         | . 36   | U . U U            |
| 464           | Em2                  | 1               | 74.3          | <b>⊍.</b> ∪ | ٤,٠    | 6.06               |
| 467           | - LIFA               | <u> </u>        | 74.1          | 0.0         | .11    | 0.00               |
| 465           | £ K3                 | ć               | 74.7          | 0.0         | . 16   | • 6 6              |
| 563           | Edl                  | 1               | 2000          | dist        | • 0 (- |                    |
|               |                      |                 |               |             |        |                    |

## PERSONNEL NUISE EXPUSURE AIR IMPAUL AVERAULS

THRESHULL LEVEL 8-HK PERMISSIBLE LEVEL = 90.0 004 ... STAN SUNAHUKS

## FF-1085 USS BEARY

|   | GRADE<br>CODE | GRADE<br>DESCRIPTION | NL. GF<br>Pers. | SUUNU          | 1. L. L.             | DAILY<br>MEAN | Nulst dust    |
|---|---------------|----------------------|-----------------|----------------|----------------------|---------------|---------------|
|   | 505           | EH3                  | 1               | 160.2          | Let                  | 4.69          | J. 00         |
|   | 563           | EN1                  | 1               | 40.5           | 6.0                  | 3.27          | <b>0.0</b> 00 |
|   |               | Nf ts                |                 | 41.5           | نامان                |               | . 0.36        |
|   | 3LZ           | FA                   | 1               | 40.4           | U . U                | 2.0i          | じゅじし          |
|   | 406           | <b>EMFN</b>          | 1               | 40.4           | Ú . U                | 2.61          | 0.00          |
|   | £04           | <u></u>              |                 | 12606          |                      |               | 1.14          |
|   | 262           | MMC                  | 1               | 42.1           | U . U                | 1.53          | t.(U          |
|   | 105           | £ <b>T</b> 3         | 6               | 91.0           | 4 . 4                | 1.45          | د .           |
| _ |               | LIFA                 |                 |                | با و تنسب            |               | Lati          |
|   | 603           | ŁNS                  | Ž               | <b>7 . 9</b> ن | ٠. د                 | 1.00          | ل به .        |
|   | 109           | ŁT                   | 4               | 09.4           | د ه ن                | 1.00          | .17           |
|   | 465           | r.r.s                | . 4             | Ly.2.          | ذه ب                 | 36            | . 44          |
|   | 267           | カセチム                 | 1               | 34.4           |                      | . 76          | 4.60          |
|   | 464           | LM2                  | 1               | 5706           | 6.                   | 4             |               |
|   | 163           |                      |                 |                |                      |               | الم           |
|   | 301           | FN                   | Ī               | ೬೮.೮           | U . C                | • 04          | 0.00          |
|   | 405           | EM3                  | ī               | 66.6           | ن و ا                | • 5 6         | 0.50          |
|   |               | LIFN                 |                 | -21.4          | ــــا منا            | 7:            | نان ۽ يا      |
|   | 206           | nrfis                | -<br>و          |                | 4.0                  | ځ ن ه         | ٠ ١٥          |
|   | <b>∠</b> 09   | mH                   | Ž               | 60.3           | 4.5                  | • • •         | • 14          |
|   | 104           |                      | ī               | 7_             | رون د<br>نام ســــــ | 45            |               |
|   | 602           | LTJG                 | 1               | 74.6           | U . U                | .14           | 0.00          |

Water State Control of the Control o

## PERSONNEL NUISE EXPUSURE AND IMPACT ANDRAUGS

THESHULD LEVEL 8-HR PERMISSIBLE LEVEL = 40.0 DEA EXCHANGE HATE

| FF-1   | 002 | 2211 | HART  |
|--------|-----|------|-------|
| rr - 1 |     | UDD  | TIMIL |

|   | GRADE<br>CODE |                      | · · · · · ·     |                  |               |               |                  |
|---|---------------|----------------------|-----------------|------------------|---------------|---------------|------------------|
|   |               | GRADE<br>DESCRIPTION | NU. UF<br>PEKS. | SUUNU<br>NEAN    | LEVEL<br>Sout | PAILY<br>MEAM | Nulsa 005a       |
|   | 207           | - mmfa               | 1               | 73.4             | نا ۽ د        | 1.06          | C • UC           |
|   | د ن ک         | nm3                  | 5               | 65.6             | 3 . 3         | . 64          | /                |
|   |               |                      |                 | <del></del>      |               |               | 55               |
|   | <b>۷</b> 06   | MMFN                 | 3               | 61.5             | 4.0           | . 75          | ئاد .            |
|   | 203           | MMFK                 | 1               | 07.5             | 0.0           | • 69          | u . (i L         |
|   |               | tl2                  |                 |                  |               | tb            | •77              |
|   | 105           | ьTЗ                  | t               | 6506             | 3 . 7         | • > 6         | • 4              |
| • | 101           | ETCr.                | 1               | -4.7             | Ú • U         | . 45          | <b>∵ .</b> € €   |
|   | 103           | LI1                  |                 |                  |               | 42            | بالكام بالمستسبب |
|   | 1(6           | eTFN                 | b               | <b>&amp;</b> ∪•Û | ذ و ن         | ت د و         | .24              |
| 1 | 602           | LTJU                 | 1               | 74.3             | ⇒ • U         | د ے ہ         | J • LÜ           |
| 1 |               |                      |                 |                  |               |               |                  |

Report 4735 Bolt Beranek and Newman, Inc.

## PERSONNEL NUISE EXPLOUNT AND IMPAUT AVERAUES

THRESHULL LEVEL = 00.0 LEA 6-mk PERMISSIBLE LEVEL = 90.0 LEA EXCHANGE RATE = 5 LEA

## FF-1081 USS AYLWIN

| <br>GRADE<br>CODE | GRADE<br>DESCRIPTION | NL. OF<br>Pers. | SUUNU<br>MEAN | LEVEL<br>Sout | HLAR  | Nu15c 005c   |  |
|-------------------|----------------------|-----------------|---------------|---------------|-------|--------------|--|
| <br>104           | bTZ                  | 1               | 54.7          | (             | 1.71  | 0.00         |  |
| 106               | BTFN                 | 4               | 46.6          | .4            | 15    | • 6 6        |  |
| <br>105           | t13                  |                 |               |               |       | -15          |  |
| 601               | LT                   | 1               | 40.4          | 6.0           | 1.15  | <b>∪.0</b> ℃ |  |
| 103               | bT1                  | 1               | 64.9          | (.,           | .49   | ひょうじ         |  |
| <br>              | EM1                  |                 | 68.4.         |               | 5     | <b></b>      |  |
| 263               | nm1                  | 1               | 00.2          | 0.6           | .76   | 6.00         |  |
| 603               | ENS                  | 2               | 61.5          | 4 . 1         | .15   | • 4 U        |  |
| <br>206           | AHFA                 |                 |               | <u></u>       |       | . 425        |  |
| 506               | ENFN                 | 1               | 60.5          | 5 . C         | • 63  | u.lt         |  |
| 602               | LTJ6                 | 1               | 55.4          | ن ⊷ ن         | • > 7 | 6.00         |  |
| 205               | mm3                  |                 | دوطا          | ذه ت          | . 50  | .15          |  |
| 264               | Fifi2                | 2               | usei          | 4 . 7         | . 4 4 | • • •        |  |
| 565               | LN3                  | 1               | 14.3          | - • 6         | • 6 3 | 0.0          |  |

### MERSUNNEL NUISE EXPUSUAL AND IMPACT AVERAGES

THRESHOLD LEVEL = 50.0 JBA 5-RR PERMISSIBLE LEVEL = 90.0 JDA EXCHANGE RAIL

## FF-1097 USS MOINESTER

|   | GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. úf<br>Pers. | S GUNU<br>A E A N | S.U.          | DALLY    | No.156 6655<br>5.0. |
|---|---------------|----------------------|-----------------|-------------------|---------------|----------|---------------------|
|   | 104           | uT2                  | 4               | <br>              | 4.4           | 1.18     | .41                 |
|   | cle           | nrc                  | 1               | 40.1              | 0.0           | 1.01     | <b>U.</b> ∪         |
|   |               |                      | <u></u>         | - 66.8            | 3.5           | 46       | t & 5 5             |
|   | 106           | EIFN                 | 7               | 66.5              | 5.3           | . 73     | ذد •                |
|   | 203           | mm1                  | 1               | 6003              | <b>∪_</b> ∪   | •60      | 0.00                |
|   | 361           |                      |                 | 64.7              | .t            | 45       | . Ú4                |
|   | 207           | MNFA                 | 4               | 63.1              | <b>&gt; 0</b> | . 44     | • 2 4               |
|   | 204           | nn2                  | 2               | 83.2              | <b>~-1</b>    | • 40     | .14                 |
|   | <b></b>       | £na                  |                 | . 62.7            | 3.4           | 44       | -17                 |
|   | £63           | ENS                  | 1               | 06.7              | U • G         | 7د.      | <b>(</b> • ()       |
| ~ | 168           | bTFK                 | 2               | 00.9              | 7.4           | • 35     | • 32                |
|   | LLE           | AREA                 | <b>c</b> .      | . 78.0            | 4.4           | • 4 5    | .10                 |
|   | 51.3          | e is 1               | 1               | 75.9              | U • U         | . 14     | 5.00                |
| • | 163           | LIFA                 | 4               | 13.7              | 4.7           | .12      | •17                 |
|   | 102           | oIC                  |                 | _ /0.0            | U • U         | كاثا مسس |                     |
| • | 504           | L N Z                | 1               | 67.5              | 0.0           | . 04     | じっぱし                |
|   | 601           | LT                   | 1               | 6.63              | 0.0           | • (· 3   | 0.00                |
| ! |               | LLDa                 |                 | _ <b>M</b> **     | 444-0         | تايام    | C & C U             |

PERSUNNEL NUISE EXPUSURE AND IMPAUT AVERTOUS

THRESHULD LEVEL = bu.t JBA 8-MR PERMISSIBLE LEVEL = 40.0 UDA EXCHANGE KATE

## FF-1075 USS TRIPPE

| <br>GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. Of<br>PEKS. | 3 UUNU<br>ME AN | LÉLEL<br>S.U. | MEAI | No13= Dosc   |
|-------------------|----------------------|-----------------|-----------------|---------------|------|--------------|
| <br>              | DESCRIPTION          |                 |                 |               |      |              |
| 107               | LTFA                 | 4               | 40.5            | U • U         | 1.67 | . 6.00       |
| elb               | mh3                  | 1               | 57.7            | U . U         | • 45 | <b>0.6</b> 6 |
| <br>              | - ENFA               |                 |                 |               |      | 16           |
| 105               | £ <b>1</b> 3         | 4               | 67.8            | ٥ . د         | . 74 | .34          |
| 164               | ET2                  | <b>ં</b>        | 67.U            | 5             | . 77 | .27          |
| <br>166           | EIFA                 |                 | c7.L_           | 4             | 74   |              |
| 207               | hel a                | 1               | 61.1            | 0.0           | .67  | ა . €0       |
| 163               | £11                  | 1               | 02.5            | <b>∪.</b> 0   | . 53 | <b>€.</b> 0€ |
| <br>-264          | nnc                  |                 | <u></u>         |               |      | . 0.00       |
| 303               | FN                   | 1               | 02.1            | U . L         | • 34 | ( • 00       |

## APPENDIX J

Individual Noise Exposure Results for All 12 Ships
Using Sub-area Averages over All 12 Ships
For the Noise Level Data

## PERSONNEL NUISE EXPUSORE AND IMPACT

THRESHULD LEVEL 8-HR PERMISSIBLE LEVEL = 90.0 LbA EXCHANGE RATE.

|          | GRADE<br>CODE  | GRADE<br>DESCRIPTION | NO. OF     |                    | CL DALLY                                 | Nu155 uL5_   |
|----------|----------------|----------------------|------------|--------------------|------------------------------------------|--------------|
|          | 60400          | LLLi                 | 1          | 50.0 64<br>50.0 64 | ان د د                                   | • t.3        |
|          |                | 24                   | i          |                    |                                          |              |
|          | 60303          | ENS                  | 1          |                    | .4 .41                                   | •44          |
|          | 66362          | t NS                 | ī          |                    | .7 .05                                   | <b></b> 58   |
|          | PC301          | 243                  |            |                    | عادمــــــــــــــــــــــــــــــــــــ | کنده.        |
|          | 60360          | ENS                  | 1          | رن Loo.1           | .3 .53                                   | • 7 1        |
|          | 66207          | LTJU                 | 1          | 14.5 75            | ٠٠ - ١٠٧                                 | د نه         |
|          | 6040t          |                      |            | _14.511            |                                          | <b>41</b> E  |
|          | 66265          | LTJu                 | 1          | 75.3 61            | .1 .13                                   | • 29         |
|          | 66204          | LTJ6                 | 1          | 03.7 CU            | .1 .46                                   | •56          |
|          | المناعلات الما |                      |            | غته ف م شعد        |                                          | 1د.          |
| •        | 66262          | LT Ju                | 1          |                    | •5 •05                                   | .14          |
| _        | 66.01          | LTJJ                 | 1          | 61.5 63            |                                          | ب<br>نون     |
|          | <u> </u>       | <u></u>              |            |                    | <u> </u>                                 |              |
| L 4      | 60105          | LĪ                   | 1          |                    | 11                                       | • ≱ 8        |
|          | 60104          | ŁŤ                   | 1          | 40.9 44            | .1 1.13                                  | 1.15         |
| ;        | 60103          |                      | 1          | 7:-1 74            | ولام وم                                  | • <b>4</b> 5 |
| į        | 61102          | LT                   | 1          | 01.2 01            | .5 .30                                   | 11.          |
| • *      | 66161          | LT                   | 1          |                    | .5 .43                                   | 1.57         |
|          | 101134         |                      | 1          | 24-1               | ت مــــــــــــــــــــــــــــــــــــ  | 4            |
| 1        | 500(1          | ENFIN                | 1          |                    | 1.17                                     | د د د د      |
| :        | 50600          | ENFN                 | 1          | 97.0 103           | .4 2.67                                  | 0.42         |
|          | 50566          | LN3                  | 1          | 43.2 44            | 7 بام                                    | ادود .       |
| 1        | うしうしう          | EN3                  | 1          | 45.3 10.           | . 2.09                                   | 4.67         |
| i        | 50504          | LN3                  | 1          | 90.0 164           | ود و د ه                                 | 1.54         |
|          | دعادی د        |                      |            | <u> </u>           | ١٤ هـــ ــ ٢٠                            | 4-14         |
| ;        | 50502          | E N3                 | 1          | 42.2 41            | .0 1.17                                  | 2.63         |
| į        | 50501          | EN3                  | 1          | 43.0 44            | .3 1./1/                                 | د ع و د      |
|          | <u> 50500 </u> | EN3                  |            | <u> </u>           | 011019                                   | 4 . 34       |
|          | 504C0          | ENZ                  | 5.<br>•    | ti.9 51            | دد. 7.                                   | .13          |
| 1        | 50304          | EN1                  | 1          | 43.2 47            | .0 1.57                                  | ناد و        |
| -        | <u> </u>       |                      | 11         | <u> 94al _97</u>   | 4 10 70                                  |              |
|          | 50302          | t Ni                 | 1          | 40.3 10.           |                                          | 4.67         |
| ·<br>}   | 50301          | ENI                  | · <b>1</b> | 91.9 51            |                                          | 6.46         |
| <u>.</u> | 56360          |                      |            | علاي ومثالا        | allal4                                   | 4.34         |
|          | 46760          | EMFA                 | 1          |                    | .0 .1                                    | • 44         |
| ,        |                |                      | -          |                    |                                          | •••          |

#### PERSUNNEL NUISE EXPUSURE AND IPPAUT

THRE SHULD LEVEL = 5000 LOA
5-HK PERMISSIBLE LEVEL = 9000 DUA
EXCHANGE RATE = 5 DUA

| <br>47477                 |                      |          |                     |                                         |                |
|---------------------------|----------------------|----------|---------------------|-----------------------------------------|----------------|
| GRADE<br>CODE             | GRADE<br>DESCRIPTION | NU. UF   | SUUND LEVEL         |                                         | NU15: UES:     |
|                           | · , ·                |          |                     | - The AN                                | het.           |
| 46602                     | EMFN                 | ı        | 56.0 64.7           | ناده                                    | • 44.6         |
| <br>- 4LOL1               | LBrN                 |          |                     | د د مــــــــــــــــــــــــــــــــــ | -14            |
| 40600                     | EMFN                 | ī        | 90.3 Yo.1           | 1.04                                    | 6.34           |
| 40505                     | EM3                  | 1        | 71.4 21.4           | 7                                       | • 4 4          |
| <br>46584                 | Łm3                  |          |                     | t.                                      | .4.            |
| 40つしょ                     | £F3                  | 1        | 60.3                | • £ c                                   | . 34           |
| 40562                     | EM3                  | 1        | 10.5 70.1           | . 67                                    | .15            |
| <br>46561                 | <u>LA3</u>           |          | <u> </u>            | 19                                      | 7              |
| 40560                     | L fi 3               | 1        | 64.9 80.9           | . 49                                    | • t/o          |
| 40463                     | £ M2                 | 1        | c7.2 4.00           | • 6 8                                   | عذمه           |
| 46464                     | .EML                 | 1        | - 1103              | . 17                                    | •              |
| 40401                     | Lite                 | <b>L</b> | CL. 5 07.5          | n <b>ر</b> .                            | • > 4          |
| 40465                     | Ł r c                | 1        | 63.7 4.02           | د د و                                   | 4.12           |
| <br><u> 40.16.</u>        |                      |          |                     |                                         |                |
| 40301                     | LMI                  | 1        | 61.6 00.0           | . 66                                    | • **           |
| 46300                     | £M1                  | 1        | 45.1 44.9           | 2002                                    | ع <b>٧</b> و د |
| <br>40260                 | Ł MC                 |          |                     |                                         | 1.10           |
| 30301                     | FK                   | 1        | 70.4 74.4           | • 42                                    | • 4 3          |
| 0٠) د باد                 | F Ř                  | 1        | cii.s & 2.00        | . 26                                    | • 36           |
| <br>30262                 |                      |          | المديات فامتك       | . ولامه                                 | . 4.67         |
| 30201                     | <b>+ A</b>           | 1        | 02.02 63.1          | . 54                                    | •3E            |
| <b>3</b> 0260             | FA                   | 1        | 40.3 90.1           | 1.04                                    | 6.34           |
| <br>ـــ معدانـــ          | tn                   | 1        |                     |                                         | 1.61           |
| 30107                     | + N                  | 1        | 64.5 75             | • U &                                   | .69            |
| 36106                     | <b>F</b> N           | 4        | uled took           | • 6 6                                   | •55            |
| <br>36165                 |                      |          | ـ لامنعـــ للمحمّــ | ــــــــــــــــــــــــــــــــــ      | دن.            |
| 30104                     | <b>FN</b>            | 1        | 61.3 Ec.5           | 0 د •                                   | • 30           |
| 30103                     | FN                   | 1        | 65.4 96.4           | • 53                                    | 1.05           |
| <br>                      |                      |          | - Dia4 - E1a4 -     |                                         | 74             |
| 30101                     | FN .                 | 1        | 50.3 61.4           | • 60                                    | .75            |
| 30100                     | FN                   | 1        | 86.3 61.4           |                                         | • 75           |
| <br>21000                 | MMCS                 |          | <u> </u>            |                                         | د1ء            |
| 20901                     | n n                  | 1        | 65.5 81.E           | . > 4                                   | ٠7،            |
| 209C0                     | nn                   | 1        | 63.6 54             | ٧ ز ه                                   | • > 7          |
| <br>ــــــ لاناع للغـــــ |                      |          |                     | 4                                       | 4.662          |
| 26712                     | PIKEA                | ì        | (0.5 02.5           | 7                                       | • <b>3</b> G   |

#### PERSONNEL NUISE EXPOSERE AND IMPACT

THRE SHULD LEVEL 8-MK PERMISSIBLE LEVEL = 90.0 DDA EXCHANGE KATE

|   | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF    |          | LEVEL            |                | Mal32 BU32 |
|---|---------------|----------------------|-----------|----------|------------------|----------------|------------|
|   |               | -                    |           |          |                  |                | ****       |
|   | 20711         | MMFA                 | 1         | 90.0     | 4106             | 1.00           | 1.10       |
|   | L71C          | MMFA                 |           | <u></u>  |                  | • 41           |            |
|   | 26764         | MMFA                 | 1         | 04.9     | 6/.3             | . 20           | • 00       |
|   | 20708         | MMFA                 | 1         | 03.2     | 85.4             | . 59           | •57        |
|   | 2L7C7         | MMFA                 |           |          | 4.4              |                |            |
|   | 20706         | MMFA                 | 1         | 81.6     | 57.7             | .12            | .46        |
|   | 26705         | nnfa                 | · 1       | 52.2     | 45.4             | 1.30           | 4.54       |
|   | 20764         |                      |           |          |                  | ٧ ځم           | ده.        |
|   | 20763         | nnfa                 | 1         | 10.2     | 70.0             |                | .21        |
|   | 26702         | MMFA                 | 1         | 65.2     | <b>نا .</b> . رو | . 59           | • 35       |
|   | 26761         | LILL BMFA            |           | كمفتند   | 44               | a 54           | • 5 5      |
|   | 20766         | r. p. F. a           | <u> i</u> | <b></b>  | 50.0             | • > 2          | • 15       |
|   | 20039         | MF F F               | i         | 10.2     | 37               | • <b>.</b> . U | • i        |
|   | <u>20e56</u>  | 111.4 15             | <u> </u>  |          | ــ دمينة ــ      | 44             |            |
|   | 2l 637        | MMEN                 | 1         | 42.5     | 43.5             | 1.42           | 1.63       |
|   | 20036         | nnft                 | 1         | 87.1     | 91.7             | .09            | 1.27       |
|   | <u> </u>      | AGFA                 |           |          |                  |                | - 44       |
|   | 20634         | MMFN                 | 1         | 07.1     | 2706             | . 67           | .40        |
|   | 26633         | MMFN                 | 1         | 61.5     | 62.6             | . 31           | • 36       |
|   | 20632         | mren                 | 1         | Yaal.    | Y.u.a 4          | 1.4            | 1.54       |
|   | 20631         | MMFN                 | i         | 40.Û     | 9603             | 1.00           | 4.35       |
|   | 26630         | MMEN                 | 1         | 15.7     | 51.L             | .21            |            |
|   | 20629         | MMFN                 |           | £4.6     |                  | عد             | -40        |
|   | 20626         | REFN                 | 1         | 60.4     | <b>67.3</b>      | .00            | •90        |
|   | 26627         | MMFN                 | 1         | 41.0     | 94.6             | 1.64           | i.to       |
|   | 24620         | Anfa                 | l         | Lesi     | 44.49.           | 73             |            |
|   | 20625         | MMFN                 | 1         | 60.4     | 84.3             | . 80           | .96        |
|   | 20624         | hnfn                 | 1         | 64.7     | £ & . 6          | .48            | .57        |
| · | 20623         | MMEN                 |           | 54.3     | -buse            | دو مــــــــ   | b4         |
|   | 20622         | MMEN                 | 1         | 74.5     | 82.6             | ذ ع ه          | 7          |
| 1 | 20621         | MMEN                 | 1         | 60.5     | 64.7             | . 54           | .96        |
|   | 20020         | MMFN                 |           | 36.2     |                  |                |            |
|   | 26619         | MAFN                 | 1         | ١١٠١     | 07.6             | . 67           | • 45       |
| 1 | 20616         | MMFN                 | ì         | 73.4     | 77               | 1.00           | 1.00       |
| 1 | 24617         | EMEN                 |           | <i>9</i> | ئ <b>. د</b> لا  |                | د ۱۵۵۵     |
|   | 20616         | MMFri                | 1         | £5.4     | 01.4             | .53            | .75        |

#### PERSUNNEL NUISE EXPUSERE AND INFACT

THRESHULU LEVEL = bull son b-nk Permissible Level = 90.0 uba Exchange kale = 5 bea

| <br>ALL SILIS     |                      |          |          |                                               |                                                   |                   |  |
|-------------------|----------------------|----------|----------|-----------------------------------------------|---------------------------------------------------|-------------------|--|
| <br>GRADE<br>CODE | GRADE<br>DESURIPTION | NU. ÜF   |          | LEVEL                                         | UALLY A                                           | ulsc plac<br>holo |  |
| 20615             | MMFIN                | 1        | C U • D  | 41.5                                          | •61                                               | 1063              |  |
| /zue14            | AFFA                 | ī        |          |                                               |                                                   |                   |  |
| <br>26613         | MMFN                 | 1        | 01.4     | 64 · Y                                        | اد و                                              | .49               |  |
| ∠0612             | MMFN                 | ī        | 60.l     | 41.5                                          | .76                                               | 1.42              |  |
| <br>20611<br>     | PAFA                 |          |          | 44-7-                                         |                                                   | - 4047            |  |
| <br>20610         | MAFIN                | 1        | 61.6     | 54.6                                          | ١٠.                                               | • 47              |  |
| 26669             | MMEN                 | ī        | 63.4     | 54.J                                          | •46                                               | •56               |  |
| <br>clolt         | MMEN                 | <u>_</u> |          | ـ. لأمادهــــــــــــــــــــــــــــــــــــ | <b>ئد. مـــ</b> ـــــــــــــــــــــــــــــــــ |                   |  |
| 20607             | MEN                  |          | 10.9     | 15.0                                          | • 16                                              | . 4               |  |
| 2066              | MBEN                 | ī        | 10.3     | 10.1                                          | • i.7                                             | .15               |  |
| <br>_ 20ما2       |                      |          |          |                                               |                                                   | د٤٠               |  |
| 26064             | 68EN                 | 1        | 6.07     | ( )                                           | 1                                                 | • 30              |  |
| 2000              | nar.                 | ī        | ٠,٠      | 54.9                                          | • 41,                                             | • b c             |  |
| <br>zuntż         | Pdrf.is              |          |          | بامنيا                                        |                                                   | دا                |  |
| 26601             | MMFIN                | ì        | 64.6     | 94.03                                         | • 64                                              | 1.20              |  |
| 206CU             | MMFN                 | 1        | 70.5     | 45.3                                          | 1.41                                              | 1.50              |  |
| <br>20552         | hn3                  |          | دمانته   | 04.6                                          | 7                                                 | ى <b>د.</b>       |  |
| 20551             | nn3                  | 1        | 64.2     | 00 • 3                                        | .45                                               | · t (             |  |
| 20550             | Emm 3                | 1        | -7.0     | Jy.7                                          | .72                                               | .46               |  |
| <br>20549         |                      |          | <u> </u> | 4                                             |                                                   | 41                |  |
| 20546             | nr3                  | 1        | 02.0     | 64.7                                          | • 36                                              | • 4 5             |  |
| 20547             | n#3                  | 1        | とぞっち     | 46.6                                          | . 41                                              | 1.36              |  |
| <br>_£6546        |                      |          | 4000     | ناملائل_                                      | 59.                                               | .67               |  |
| 20545             | nn3                  | 1        | 77.0     | 14.7                                          | • 10                                              | • 44              |  |
| 26544             | mm3                  | 1        | 60.3     | e : • d                                       | .74                                               | . : 4             |  |
| <br>              |                      |          | لاملائد  |                                               | 5.7 _                                             | 15                |  |
| 20542             | rm3                  | 1        | 67.4     | 64.3                                          | .75                                               | .41               |  |
| 20541             | MM3                  | 1        | 64.5     | 64.7                                          | . 45                                              | • 4 5             |  |
| <br>20540         | MM3                  | 1        | وملان    | ــدمناكـــ                                    | ناطمــــــــــــــــــــــــــــــــــــ          |                   |  |
| 20539             | mm3                  | 1        | 66.7     | 41.4                                          | 7 د •                                             | A •               |  |
| 20536             | MM3                  | 1        | €7.6     | 64.7                                          | • 7 <i>2</i>                                      | •90               |  |
| <br>20537         | nni                  | 1        | <u> </u> | 44.5                                          | laue                                              | 4.47.             |  |
| 20536             | nm3                  | 1        | 60.4     | <b>د. د</b> د                                 | •65                                               | .43               |  |
| 20535             | mm3                  | 1        | 60.3     | 65.6                                          | • • •                                             | . 3 =             |  |
| <br>66534         |                      |          | C+Kd     | . Beak.                                       |                                                   | 4027              |  |
| 20533             | nr.3                 | 1        | (5.4     | ot • 7                                        | ٤ : •                                             | • • •             |  |

## PERSONNEL NOTSE EXPOSERE AND IMPACT

THRESHOLD LEVEL = 50.0 DEA 8-MK PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF      | SCUND LEVEL           |                                          | 16156 0656         |
|---------------|----------------------|-------------|-----------------------|------------------------------------------|--------------------|
| <br>. 0021    |                      | PtaSe       | M&AHH+++ =            | Ai_Al                                    | <b>*</b> • • •     |
| 20532         | nm3                  | 1           | 60.5 60.0             | در.                                      | .57                |
| <br>          |                      | <del></del> | <del></del>           |                                          | 4.47               |
| 26530         | mm3                  | 1           | 55.4 64.Y             | • E i                                    | . 40               |
| 20529         | MM3                  | 1           | 00.4 07.4             | • <b>6</b> 1                             | • 43               |
| <br>21.528    |                      |             |                       |                                          | 😽 96 -             |
| 26527         | hr3                  | 1           | 69.4 Ct.0             | • 52                                     | • 0 4              |
| 20526         | nH3                  | 1           | 67.0 65.1             | • 1 -                                    | د خ •              |
|               | 653                  |             | 0.                    |                                          | 51                 |
| 20524         | nn 3                 | 1           | 95.3 161.1            | 4.04                                     | 4.67               |
| 20523         | nn3                  | 1           | 65.5 51.6             | . 54                                     | •72                |
| -26522        | #.3                  |             |                       | - 434                                    | -57                |
| 26521         | กกว                  | 1           | 5001 920/             | 1.00                                     | - • 20             |
| というとし         | たのう                  | 1           | 50.00 96.00           | 1.67                                     | 4 . 4 4            |
| <br>          |                      |             | - Park - Kaku         | بالامـــــــــــــــــــــــــــــــــــ | المالك المالك الما |
| 20516         | nn3                  | 1           | 92.0 92.7             | 1.32                                     | 4.46               |
| 20517         | nm3                  | ì           | ulob troc             | .71                                      | • 40               |
| <br>20516     |                      |             | و مدوـــــ تـمدوـــــ | -lole                                    | 1.16               |
| 20515         | ##3                  | 1           | 5x44 64+4             | 0 د ٠                                    | •47                |
| 26514         | nh3                  | <b>1</b>    | 4                     | .61                                      | • ¥ ë              |
| <br>          | <u> </u>             |             | . <u> </u>            |                                          | <u>. Ł</u> £       |
| 20512         | MM3                  | . 1         | 00.4 P.00             | •65                                      | • 7 4              |
| 20511         | hit s                | 1           | 64.0 64.0             | <b>ذد.</b>                               | .47                |
| <br>20510     | nn3                  |             | الأملالا المسالة منتا | L                                        | • 4 c              |
| 26569         | mn3                  | 1           | 61.4 N4.6             | د د ه                                    | • 4 7              |
| 26568         | Mr.o                 | 1           | 00.9 65.0             | • ຍ >                                    | • 4 4              |
| <br>          | 684                  |             |                       | 11                                       | 411                |
| 20506         | nn3                  | 1           | t 3. 1 30.t           | •41                                      | •63                |
| 20505         | nn3                  | 1           | 65.7 67.4             | • 55                                     | • 69               |
| <br>20504_    | nn3                  |             |                       | 45                                       | .oi                |
| 20503         | mm3                  | <b>.</b>    | 14.8 01.05            | . 4                                      | • 35               |
| 26562         | mm3                  | 1           | £6.35 66.63           | •65                                      | .19                |
| <br>          | nn3                  |             | <u> </u>              | ·                                        | آدم                |
| 20500         | mm3                  | 1           | 70.7 72.6             | 1.17                                     | 4.44               |
| 20425         | PM2                  | 1           | 02.9 U2.00            | 7د •                                     | •46                |
| <br>20424     | EM2                  |             | 71                    |                                          | 4 4 7              |
| 20423         | MEL                  | 1           | UTOL YEAR             | • 5 &                                    | 4.66               |

#### PERSONNEL NOISE EXPOSENCE AND INFACT

THRESHOLD LEVEL = 50.0 JOH 6-HR PERMISSIBLE LEVEL = 90.0 JCA EXCHANGE RATE = 5 JUL

|              | COMMUNICATION OF THE PROPERTY |                      |             |                                           |                      |             |                    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------------------------------------|----------------------|-------------|--------------------|
| Tenna a rate | GRADE<br>CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GRADE<br>DESCRIPTION | NU. LF      |                                           | LÉGEL<br>Molo        |             | NUISE EUSE<br>Hala |
|              | 20422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nM2                  | ı           | 9 <b></b> 6                               | 4 0                  | 1.25        |                    |
|              | 20421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EM2                  | 1           | <u></u>                                   |                      |             | • Yc               |
|              | 20420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nr2                  | 1           | 04.0                                      | نه د درن<br>نه و درن |             | • 3 c              |
|              | 20419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nr2                  | ī           | 66.9                                      | 67.0                 | . 64        | • • • •            |
|              | _4041a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | -           | leu-                                      |                      |             | .96                |
|              | 26417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ni12                 | 1           | د.دن                                      | tc •U                | •>2         | .10                |
|              | 20416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm2                  | ī           | (0.4                                      | 30 <b>. 4</b>        | .75         | • 0 0              |
|              | _48415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | i .         | Lak                                       |                      | 44          | 1014               |
|              | 20414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFZ                  | 1           | 70.0                                      | Y C                  | 1.07        | 1.44               |
|              | 20413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Print 2              | ī           | 86.6                                      | 60.                  | ٠ ت د       | .7:                |
|              | 20412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nriz                 | 1           | ئەرب                                      | بادنت                | 424         | دا ،               |
|              | 26411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 662                  | 1           | 01.0                                      | 4.1                  | . (.        | • 7:               |
|              | 20410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 56                 | ī           | 73.4                                      | 95.0                 | 1.57        | ب د د د<br>پاک و د |
|              | KU4LY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P.F.Z.               |             |                                           |                      | نادهـــ ـــ | . 49               |
|              | 20408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | him2                 | 1           | 71.0                                      | 4301                 | 1.45        | 4.00               |
|              | 20407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hm2                  | ì           | 00.4                                      | 64.4                 | .61         | . 45               |
|              | 21466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BM2                  | 1           | لامديــــــــــــــــــــــــــــــــــــ | E.a.u                | 40          | دده                |
|              | 20405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nm2                  | 1           | 62.9                                      | 7 . بان              | . > 7       | • :4               |
|              | 26404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nm2                  | 1           | 14.4                                      | 11.0                 | • 4 4       | .10                |
|              | 20463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIEZ                 |             |                                           | ال مشت               |             | 0.3                |
|              | 20402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nm2                  | 1           | 64.0                                      | 20.4                 | . 44        | .54                |
|              | 20461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hn2                  | 1           | 5                                         | 64 a G               | د د .       | .47                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nr.2                 | <del></del> | 4_4_                                      | 00.1                 | 44          | . 53               |
|              | 21309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nm1                  | i           | 64.6                                      | 46.0                 | . 04        | • <b>≠</b> %       |
|              | 20300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm1                  | 1           | 66.4                                      | €3.€                 | • o l       | ده.                |
|              | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>nri</u>           |             | 14.2                                      | ـ دمدننــــ          | 44          | د د ه              |
|              | 20366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nml                  | 1           | 92.4                                      | 43.6                 | 1.40        | 4.52               |
|              | 20305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nal                  | 1           | 61.4                                      | <b>とり</b> 。6         | . 15        | .0/                |
|              | 20304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |             | مامه                                      | . لامعنــــ          | 24.         |                    |
|              | 20363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nn1                  | 1           | じつ・つ                                      | 20.9                 | • 53        | . <b>ઇ</b> દ       |
|              | 20302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nnl                  | 1           | € 0 0 0 °                                 | CU . U               | • 6 4       | . 54               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 1           |                                           | _دمنو_               |             | 1.440              |
|              | 20360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n#1                  | 1           | 01.6                                      | 57.7                 | .72         | • 90               |
|              | 20264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hnC                  | 1           | 60.5                                      | CC • 1               | • 66        | • 50               |
|              | . 202C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |             | y i a 4                                   | 44.5                 | . 1.66      | 4.47               |
|              | 26262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nac                  | 1           | ~ 7 . 7                                   | 4                    | . 47        | .51                |

# PERSUNNEL NUISE EXPUSITE AND IFFAUT

THRESHULD LEVEL = du.u .DA 6-HR PERMISSIBLE LEVEL = 40.6 UCA EXCHANGE HATE

|            | GRADE<br>CODE        | GRADE<br>DESCRIPTION | NL. UF                  | SUUNJ EEVEE<br>LEAN HOLO |                                         |              |
|------------|----------------------|----------------------|-------------------------|--------------------------|-----------------------------------------|--------------|
|            |                      |                      |                         |                          |                                         |              |
|            | 20261                | nhi                  | 1                       | cc.5 41.4                | .61                                     | ن الله الله  |
|            | 20200                | EMC                  |                         | 4.56.4                   | 42                                      |              |
|            | 10901                | εĪ                   | 1                       | 67.4 94.4                | .70                                     | 1.40         |
|            | 10900                | ьт                   | 1                       | 2000 2000                | • <b>5</b> k                            | .75          |
|            |                      | EIFA                 |                         |                          |                                         | 6.75         |
|            | 10803                | BTFK                 | 1                       | 96.7 93.7                | 1.46                                    | 1.67         |
|            | 10862                | CTFK                 | <b>∔</b>                | 44.0 44.7                | 1.47                                    | 1.71         |
|            |                      | <u>bIfk</u>          |                         | 1-04-4-0-1               | 14                                      | <b></b>      |
|            | 10200                | ETER                 | 1                       | 64.5 67.5                | . 47                                    | .94          |
|            | 10718                | ETFA                 | 1                       | 42.7 46.3                | 1.45                                    | ۷.41         |
|            | 10717 .              | LLEIFA               |                         | 1.7                      | -12                                     | •=1          |
|            | 16716                | LTFA                 |                         | CO.4 71.02               | .54                                     | ٠.3          |
| -          | 10715                | LTFA                 | 1                       | 4306 4004                | 1.02                                    | 1.51         |
|            | 16714                |                      |                         | Sape Caler               | 7                                       |              |
| <b>.</b> . | 10713                | BTFA                 | 1                       | 60.5 93.6                | • 02                                    | 4.64         |
|            | 10714                | cTFA                 | 1                       | 92.4 91.4                | 1.46                                    | 2.51         |
|            | 16711                |                      | 1                       | بامنيل بدملاني           | ٧ ته                                    | ندمه         |
| 1          | 16710                | ETFA                 | 1                       | 3.44 4.65                | . 44                                    | 4.45         |
| -          | 10709                | BTFA                 | 1                       | 71.3 92.5                | 1.19                                    | 4.63         |
| ·          | 10708                | Llfu                 |                         | 40.0                     | دد مـــــــــــــــــــــــــــــــــــ | 497          |
| }          | 10707                | DIFF                 | 1                       | 43.1 90.2                | 1.55                                    | 3.10         |
| i.         | 10766                | cTFA                 | 1                       | 72.4 45.3                | 1.45                                    | <b>4.0</b> € |
|            | 10765                |                      |                         | المناعة _ حمدت           | 54                                      | •61          |
| }          | 16764                | ETFA                 | $\overline{\mathbf{i}}$ | 6.24 7.60                | . 75                                    | 1.50         |
|            | 10703                | ETFA                 | 1                       | 67.4 46.4                | . 70                                    | 1.46         |
|            | 10762                | EIEA                 |                         |                          |                                         | 444          |
|            | 10701                | ÖTFA                 | ī                       | 74.3 84.4                | • 4 3                                   | • 40         |
| •          | 16700                | ŁTFA                 | 1                       | 42.4 97.4                | 1.46                                    | 4.54         |
| • .        | 14651                | IFN                  |                         | ومناه 7 مدن              | 44                                      |              |
|            | 10650                | ETFN                 | 1                       | 61.9 90.3                | . 74                                    | 1.04         |
| 1          | 10649                | BTFN                 | ī                       | 10.4 Yu.                 | • € 0                                   | 4.02         |
| <u> </u>   | 16648                | LIFI.                |                         | 1103 Yund                |                                         | <del>-</del> |
|            | 10647                | ETFIN                | ì                       | 14.2 02.4                | ٠٤٤                                     | .31          |
| ;          | 16640                | OTEN                 | ī                       | 73.7 42.4                | 1.07                                    | ر<br>و 4 و د |
| i          | 10645                |                      |                         |                          |                                         | 4.46         |
| -          | 10644                | LTFN                 | 1                       | 44.7 47.5                | 4.11                                    | 1.00         |
| :          | - <del>-</del> · · · |                      | _                       |                          |                                         |              |

#### PERSONNEL NOISE EXPOSENCE AND INFAUL

THRESHULU LEVEL = 80.0 BEA 8-HK PERMISSIBLE LEVEL = 90.0 BEA Exemange RATE

| GRADE<br>CODE  | GRADE<br>DESCRIPTION | Nu. OF   |         | <u>Lifi</u> | YLLAU    | Nolse cose     |
|----------------|----------------------|----------|---------|-------------|----------|----------------|
|                | · · · · · ·          |          |         |             | 145 744  | ****           |
| 16643          | LTFR                 | 1        | c 3 • 5 |             | .41      | • 4 4          |
| 10642          | SIFN                 |          |         | . يون ديو . |          | 1.00           |
| 10641          | CTFN                 | _<br>_   | 69.0    | c t • >     | . 54     | . Ł i          |
| 10640          | DIFN                 | 1        | 6706    | 40.1        | . 40     | 1 • C i        |
| 15034          | IFN                  |          |         | لاصلانات    | -ut      | •63            |
| 16638          | t TFN                | 1        | C 6 9 3 | 3 - 5       | • 0 }    | • 45           |
| 16637          | DIEN                 | 1        | 74.4    | 40.03       | 1.97     | 4 • 4 1        |
| -11t3b         | LIFI.                |          | 90.5    | ¥±+3        | . 1.27   | 1.54           |
| 10035          | UTFN                 | 1        | 41.0    | 74.0        | 1064     | 4.95           |
| 16634          | ETFN                 | 1        | 60.7    | ومدي        | . 54     | 1.19           |
| 16633          | JIFN                 | <u>.</u> | 34.4    | 74 4 4      | 1.45     | 1.00           |
| 16652          | .TFG                 | 1        | 200€    | 4200        | 4.11     | 1.17           |
| ibear          | c I fin              | 1        | 70.0    | 73.6        | 4.41     | 4.69           |
| ـــ نادعىدــــ |                      |          |         | عمديا       | 47       |                |
| 10029          | LIFN                 | 1        | 50 • V  | 01.8        | .57      | . 74           |
| 16628          | cIfN                 | 1        | ケト・ラ    | 43.4        | 1.65     | 4.61           |
|                | IFA                  | <u> </u> | 4.84    | 44.7.       | - 5 5    | للقمة          |
| 16626          | ETEN                 | 1        | CL.4    | 4 3         | . 61     | <b>*</b> • ∪ 5 |
| 10625          | eTFN                 | 1        | yuak.   | 4306        | 1.613    | 4.56           |
|                | LIEN                 |          | عمد في  | <u></u>     | د بامد . | 1.50           |
| 10623          | LIFN                 | l        | 70.2    | 4506        | 1.00     | 1.56           |
| 16022          | plfn                 | 1        | 40.2    | 43.6        | 1.03     | 1.56           |
| 10621          | n                    | 1        | 446     | . Vack      | 1.44     | 1.60           |
| 10620          | OTFN                 | 1        | 40.2    | 73.6        | ioしら     | 1.50           |
| 10619          | LTFN                 | 1        | 71.7    | 40.4        | Lock     | 6.44           |
| 1061&          |                      | 1        | 4401    | 4200        | ور مد    | 1.44           |
| 10017          | ETFN                 | 1        | 64.5    | ひげゅう        | .47      | . 74           |
| 10 616         | LTFN                 | 1        | 03.7    | 43.4        | د ء .    | 4./1           |
| 10015          | LIFN                 |          |         | المحاشد ا   | : 1      | .16            |
| 16614          | ETEN                 | 1        | 14.0    | 14.5        | . 14     | • < 3          |
| 10013          | bTFN                 | 1        | 46.4    | 71.4        | 1.40     | 401            |
| 16612          | EIFIA                |          |         | د مسالا     | ŁŪ       | 1.30           |
| 10611          | bTFN                 | 1        | 65.4    | 6 104       | • 6 4    | •65            |
| 10610          | ETFN                 | 1        | 64.6    | 74.4        | . 95     | 1.3            |
| . 1666         | Elkh                 |          | yiel    | 4201        | 1.17     | 34             |
| 10608          | LTFH                 | ì        | 15.4    | 1. • 5      | • . 3    | • 4 5          |

# PERSONNEL NUISE EXPOSERE AND STIFFEET

THRESHULD LEVEL 6-HR PERMISSIBLE LEVEL = 40.0 UDA EXCHANGE KATE = 5 UCA

|                      | GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. UF           |              | LEVIL               | DALLY               | MU15E DUS: |
|----------------------|---------------|----------------------|------------------|--------------|---------------------|---------------------|------------|
|                      |               |                      |                  |              | <del></del>         |                     | *          |
|                      | 10607         | bTfr                 | 1                | ٤7.4         | 4 4                 | .76                 | 1.40       |
| <b>.</b> . <b></b> . |               | CIFN                 |                  |              |                     |                     |            |
|                      | 10665         | LIFN                 | 1                | 00.0         | 72.0                | • 02                | 4.064      |
|                      | 10664         | btfn                 | 1                | <b>ა</b> ს.8 | 64.6                | . 64                | • 47       |
|                      | 10603         | bIEN                 |                  | &            | _ <del></del>       |                     |            |
|                      | 16662         | cTFN                 | 1                | 67.4         | 46.4                | . 70                | 1.40       |
|                      | 10601         | oTFN                 | 1                | 40.2         | 43.6                | دناه                | 4.50       |
|                      |               | Ll£n                 |                  |              |                     | <br>                |            |
|                      | 16544         | έΤα                  | 1                | 85.6         | &L . 4              |                     | .10        |
|                      | 10543         | bT3                  | 1                | 74.0         | 4406                | 1.14                | 1.00       |
|                      | 16542         | <b>LI3</b>           |                  |              | تاميني              | •46                 | .51        |
|                      | 10541         | LT3                  | 1                | 92.5         | 90.7                | 2015                | د د د      |
|                      | 10540         | LTS                  | <b>A</b>         | 62.4         | (4.7)               | • 31                | .47        |
|                      |               |                      |                  | 1-1-         | . ـ فـ مـ هـ فـــــ | -                   | · LALY     |
|                      | 16538         | υT3                  | 1                | 61.5         | 9000                | .70                 | 4.03       |
|                      | 16537         | <b>6</b> T3          | 1                | 40.7         | 460%                | 1.1                 | 1.30       |
|                      | 10530         | LI:                  |                  | د مانت       |                     | لاعمد               | 1.34       |
|                      | 10535         | LTS                  | Ī                | 60.5         | 4                   | .01                 | 1.43       |
|                      | 10534         | έTa                  | Ĭ.               | 00.1         | 92.1                | .77                 | 1.10       |
|                      |               | 13                   |                  | ـ دميو       |                     |                     | 1.40       |
|                      | 10532         | eT3                  | 1                | 6001         | £7.6                |                     | . 94       |
|                      | 10531         | £ <b>T</b> 3         | 1                | 46.4         | 41.4                | 4.46                | 4.51       |
|                      | 0درال         |                      | 1                | 66.7 _       | LYALY_              |                     | 10/1       |
|                      | 10524         | £T3                  | 1                | 9002         | 7.06                | 1.03                | A • 2t     |
|                      | 10528         | ETa                  | $\overline{f 1}$ | 76.4         | 41.4                | 1.73                | 4.61       |
|                      | 14547         | 1_1                  |                  |              | _ 3aek _            |                     | 1.44       |
|                      | 10520         | <b>b</b> 13          | ī                | 66.3         | 40                  | . 74                | 1.09       |
|                      | 10525         | £ <b>T</b> 3         | ī                | 67.4         | 4 4                 | . 7ú                | 4.46       |
|                      | 10524         |                      |                  |              | الأمسف              | ٧٤                  | •27        |
|                      | 10523         | £13                  | 1                | ¿2.4         | 6.06                | . > 1               | .76        |
|                      | 10522         | bT3                  | Ā                | 71.4         | 4 (                 | 1061                | 4036       |
|                      | 16521         | 13                   | i                |              |                     | <br>دور ما الماريين | - 76       |
|                      | 10520         | <b>813</b>           | ì                | £ 7.4        | 93.0                | . 43                | 4.24       |
|                      | 10519         | £ T 3                | ī                | ショ・ラ         | 77.5                | . 43                | 1.01       |
|                      | 16510         | - · ·                | i                |              | .9. 46              | در.<br>گرنامد       | 2061       |
|                      | 10517         | 610                  | 1                | د ورت        | دودا                | • 01'               |            |
|                      |               | -                    | -                |              |                     | • • •               | * * *      |

#### PERSONNEL NUISE EXPOSURE AND ITEMET

THRESHULD LEVEL = 80.0 Jun b-nR PERMISSIELE LEVEL = 90.0 DOA EXCHANGE ANTE

# ALL SHIPS

|     | GRADE<br>CODE | GRADE<br>DESCRIPTION                            | NU. Ut | SJUND LEVEL           |             | Nolse bus. |
|-----|---------------|-------------------------------------------------|--------|-----------------------|-------------|------------|
|     |               |                                                 |        |                       |             |            |
|     | 10510         | eT3                                             | 1      | 90.6 93.0             | 4.14        | 2006       |
|     | _14515        |                                                 |        | auaabiau              |             | 4.46       |
|     | 16514         | 6Ta                                             | 1      | C.16 0.69             |             | 1.66       |
|     | 10513         | 6 <b>13</b>                                     | i      | (0.7 Y1.4             | . 86        | 4066       |
|     | 10512         | EI3                                             |        | P 44                  | 66          | . loca     |
|     | 16511         | <b>61</b> a                                     | 1      | C+44 41+3             | • c t       | 4024       |
|     | 10510         | ET3                                             | 1      | שני שניים             | 1.11        | 6.66       |
| · - | 16209         |                                                 |        |                       | غد عد       | 4.17       |
|     | 16508         | 6 T a                                           | 1      | 71.h 70.c             | 1.25        | 6.57       |
|     | 16567         | bT3                                             | 1      | 40.3 41.0             | 1.65        | 4064 .     |
| -   |               | رين يا المساول الما <b>ت الحالم</b> المساول الم | 4      | 1107 2502             | نه ه        | •41        |
|     | えしかしつ         | 613                                             | 4      | 74.07 74.0            | 4 6 4 7     | 4.001      |
|     | 10564         | L [ 3                                           | 1      | 73.1 Year             | 4.66        | و دون      |
|     | كادىك_        | <del></del>                                     |        | <del>Last wat d</del> | loct        |            |
|     | 10502         | LT 3                                            | 1      | 60.1 71.1             | • > 5       | 4.4        |
|     | 10561         | ETa                                             | 1      | 46.4 47.4             | 1.46        | 2.61       |
|     | _105¢3        | 813                                             | 1      |                       |             | 1.54       |
|     | 10423         | sT2                                             | À      | 64.U 44.1             | • ೬೮        | 1.15       |
|     | 10422         | £T2                                             | 1      | 7208 7502             | 1.40        | 2.07       |
|     | 10421         | <del></del>                                     |        | t                     | باندمــــــ |            |
|     | 10420         | ET2                                             | 1      | 40.2 56.2             | 1.03        | 1.35       |
|     | 10419         | <b>6</b> T2                                     | 1      | 76.8 40.6             | 1.11        | 4.20       |
|     | _10418        |                                                 |        |                       | 4           | 461        |
|     | 10417         | t TZ                                            | 1      | 40.00 42.00           | 1.00        | 1.45       |
|     | 10416         | bΤŹ                                             | 1      | 41.5 YU.L             | 1.64        | راوه،      |
|     | 16415         | tI2                                             |        | <u> </u>              | 1.10        | 2029       |
|     | 10414         | bT2                                             | 1      | 43.0 40.1             | 1.00        | 3.05       |
|     | 10413         | P15                                             | 1      | 65.4 46.4             | ذ: •        | 1.65       |
|     | 10412         | <u> </u>                                        |        | 650 <u>20004_</u>     |             | <b>.</b>   |
|     | 10411         | £ <b>1</b> 2                                    | 1      | 43.0 45.3             | 1.52        | 1.57       |
|     | 16410         | υT2                                             | 1      | 46.66 76.05           | し・こう        | 4.41       |
|     | 10409         | bIZ                                             | 1      | <u></u>               |             | _ 4.21     |
|     | 10408         | oTZ                                             | 1      | 74.5 64.5             | ذه          | .47        |
|     | 10467         | eTż                                             | 1      | 43.3 41.3             | 1.50        | 2.75       |
|     | _16406        |                                                 |        |                       | بالديد      | 4.4-       |
|     | 10405         | υTZ                                             | 1      | 72.4 77.4             | 1.40        | 4.61       |
|     |               |                                                 |        |                       |             |            |

THE STREET WAS PROPERTY.

### PERSUNNEL NUISE EXPUDENCE AND INFAUL

THRESHULD LEVEL = 00.0 LBA b-HK PERMISSIBLE LEVEL = 90.0 JDA EXCHANGE KATE

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. OF | SJUNU L      |          |              | NUISE DUS. |
|---------------|----------------------|--------|--------------|----------|--------------|------------|
| <br>          |                      | F_A_A  |              | -B4-L4   |              | . па Се    |
| 10404         | ωTZ                  | 1      | U4.9         | 4-06     | . 44         | 1.95       |
| <br>          | 512                  |        |              | 42.4     |              | Lagi       |
| 10402         | bTZ                  | 1      | 42.4         | 41.4     | 1.40         | 2.01       |
| 16461         | εΤζ                  | 1      | <b>ن9</b> وي | 44.5     | . 43         | 1.07       |
| <br>10400     | <u> </u>             |        | 6 / 6 4      | 4.4.     |              | 4.40       |
| 10311         | LTI                  | 1      | 90.0         | 76.0     | 1.00         | 4.44       |
| 16310         | eT1                  | 1      | <b></b>      | 93.0     | . 62         | 1.04       |
| <br>11209     | EI1                  |        | ـــمالحــــ  | تا.ه شلا | Laco         | 7د.ن       |
| 10300         | b <b>1</b> 1         | 1      | 7100         | 4        | 1.15         | 1.20       |
| 10367         | LT1                  | 1      | 96.7         | 41.8     | 1.1          | € • € €    |
| 10306         | 511                  |        | سي تعمل ا    | עם בצ.   | 1046         | 4.41       |
| 16365         | LTI                  | 1      | 12.5         | 74.1     | . ( 9        | • . i      |
| 10364         | J11                  | 1      |              | 3.06     | • 44.        | • = 3      |
| <br>          | T                    |        | ب و منت      | خمحند    | <b>دعم</b> _ |            |
| 10302         | e T l                | 1      | 62.2         | 80.6     | . 51         | •76        |
| 16501         | تTì                  | 1      | とジャラ         | 43.0     | . 02         | 4          |
| <br>10360     | <u> </u>             |        | <u></u>      | Y 4      | . 70         | 40         |
| 16260         | 61C                  | 1      |              | 44.5     | 1.01         | 4 - 6 5    |
| 16205         | eTL                  | 1      | 64.5         | و دن     | -46          | . 54       |
| <br>16264     | <u>: T(</u>          |        |              | . دمده   | فعمسيب       | •47        |
| <br>16263     | ρŢĊ                  | • 1    | 57.5         | 94.5     | . 43         | 1.67       |
| 10262         | e TC                 | ī      | -            | 40.4     | 1.14         | 5          |
| <br>10201     |                      | i      | 41.4         | المدك    | 1044         | 1.24       |
| <br>10200     | υTL                  | 1      | 11.4         | 74.4     | • 0 0        | • • •      |
| 10100         | o I CM               | 1      | = -          | 94 • A   | .75          | 4 . 3 4    |

# APPENDIX K

Individual Noise Exposure Results for Each Ship Using General Area Average Noise Levels

# PERSONNEL NULSE CAPUSCRE AND ITTACT

THRESHULD LEVEL = 80.0 u ±A B-MK PERMISSIBLE LEVEL = 90.0 JUA EXCHANGE KATE - 5 LEA .....

# FF-1083 USS COOK

|   | GRADE<br>CODE | GRADE<br>DESCRIPTION | Nú. ÚF<br>Péks. | SUUNU             | LLVLL<br>H.L.  | DAILY | M+C+         |
|---|---------------|----------------------|-----------------|-------------------|----------------|-------|--------------|
|   | 60200         | LTJU                 | 1               | 72.2              | 74.6           | • (+3 | .11          |
|   | 26700         | MMFA                 | 1               | 02.9              | 65.4           | • 30  | • 5 5        |
|   |               | ANFA                 |                 | <del>74</del> 06_ | <del>2</del>   |       | اده          |
|   | 20606         | MMFN                 | 1               | 64.7              | Cu . 5         | • 4 Ł | • G T        |
|   | 20501         | nn3                  | 1               | 62.Y              | 65.4           | • 36  | • 7 3        |
|   | 20500         | E13                  |                 |                   | لمالاتا        | 463   | . o o t      |
|   | 20461         | nm2                  | 1               | 64.6              | <b>د .</b> ياڻ | .45   | • 60         |
|   | 20460         | time                 | 1               | 16.2              | <b>تا . ن</b>  | . 15  | .25          |
|   | 26301         | hml                  |                 | <u> </u>          | ئەئىل          | 1     | 1.50         |
|   | 20300         | mr1                  | 1               | 03.7              | 00.0           | . 54  | .51          |
|   | 10762         | hTFA                 | 1               | 67.5              | 41.7           | . 47  | 1.20         |
|   | 16761         | TFA                  |                 | - 1.44            |                |       | . U.S        |
|   | 10700         | oTFA                 | <u>l</u>        | 03.5              | 7              | •42   | • <b>၁</b> 5 |
|   | 10612         | : Tft                | 1               | $a \sim -1$       | 04             | ٠ ٤ ١ | د د ه        |
|   |               | EIFN                 |                 | 4.764             | _ ttol_        |       | <b>.</b>     |
|   | 10600         | BTFN                 | 1               | 84.7              | <b>د .</b> ن ن | . 47  | • ७ ୯        |
|   | 10500         | Ł <b>T</b> 3         | 1               | <b>69.1</b>       | 51.U           | • > 1 | • b t        |
|   | 10463         | I                    |                 | 7. مناط           | tiet           | 63    | • 8∠         |
|   | 10402         | ET2                  | 1               | 40.0              | 4100           | 1.00  | 4.10         |
| • | 10461         | £12                  | 1               | <b>6.63</b>       | 65.7           | .42   | ・シン          |
|   | 16466         | LIZ                  | 1               | buak_             |                | ٧٥    | .17          |
|   |               |                      |                 |                   |                |       |              |

K-1

#### PERSONNEL NUISE EXPUSERE AND IMPACT

THRESHULD LEVEL # 80.0 DEA 8-HR PERMISSIBLE LEVEL # 90.0 DBA EXCHANGE RATE # 5 DEA

# FF-1065 USS STEIN

|          | GRADE          | GRADE                                                                                 | NL. UF |          | LEVEL          |         | No.135 0035  |
|----------|----------------|---------------------------------------------------------------------------------------|--------|----------|----------------|---------|--------------|
|          | CODE           | DESCRIPTION                                                                           | PERS.  | REAN     | h.C.           | nca:    | h.L.         |
|          | 50502          | LN3                                                                                   | 1      | 4444     | ****           | • • • • | u . 00       |
|          | <b>5</b> 1.50i | ENS                                                                                   | i i    | ****     | <b>444</b>     | • 00    | 6.66         |
|          | 00026          | EN3                                                                                   |        |          |                |         | لديده بد.    |
|          | 50300          | LN1                                                                                   | 1      | 4444     | 4444           | . 00    | 0.06         |
|          | 30201          | FA                                                                                    | 1      | KAAA     | 4444           | .00     | <b>0.</b> 00 |
|          | 30260          | <b>-</b> _ <b>-</b> |        |          |                | 43      | 77           |
|          | 3(16)          | <b>F</b> Pr                                                                           | ì      | 07.1     | 9002           | •e7     | گ ∪ ہ ہ      |
|          | 20602          | MMFN                                                                                  | 1      | 73.0     | 46 . 4         | 1.70    | 6.43         |
|          |                | nee                                                                                   | 1      | <u> </u> | _ ده دو        | loi3    | 4.62         |
|          | 20660          | MMFN                                                                                  | ì      | 00.0     | 71.4           | • 65    | 1.66         |
|          | えしちじつ          | MM3                                                                                   | 1      | 46.4     | 42.5           | 1.13    | 1.06         |
|          | £U5U4          |                                                                                       |        | ومنادا   |                | 4.43    | 4.64         |
|          | 26563          | ne3                                                                                   | 1      | 65.4     | しりゅう           | •57     | ي ن ه        |
|          | 20512          | たころ                                                                                   | 1      | 71.4     | 920€           | 1.21    | +6           |
|          | 26561          |                                                                                       | 1      | 67.4     | _عمدلا_        |         | 4064         |
|          | 20500          | End :                                                                                 | 1      | 00.9     | <b>د.</b> د ت  | . 28    | -41          |
|          | 20462          | nn2                                                                                   | 1      | 41.7     | 46.4           | loct    | 4.50         |
|          |                |                                                                                       | 1      |          | 47.0           |         | >4           |
|          | 20400          | MM2                                                                                   | 1      | 67.3     | 44.5           | . 64    | 1.24         |
|          | 20302          | nn 1                                                                                  | 1      | 32.05    | 4.50           | . 25    | .51          |
|          | LU161          | <u>nel</u>                                                                            |        |          | لامنك          |         | 4.19         |
|          | 20300          | nnl                                                                                   | . 1    | 90.6     | 46.1           | 1.09    | 1.33         |
|          | 20200          | nnc                                                                                   | 1      | 50.0     | <b>ラ</b> じ • ひ | • 6 0   | 0.00         |
|          | 16761          | EIFA                                                                                  | 1      | 07.1     | عمانو          | £7      | 1.03         |
|          | 16706          | ETFA                                                                                  | 1      | 67.1     | 90.2           | •67     | 4.03         |
|          | 10662          | ETFN                                                                                  | 1      | 61.1     | 40.2           | · c 7   | 1.03         |
|          | 10661          | LIFN                                                                                  | 1      | 11.1     |                | 17      |              |
|          | 10660          | ETFN                                                                                  | 1      | 40.0     | 93.1           | 1.00    | 1.54         |
|          | 10502          | £ <b>T</b> 3                                                                          | 1      | 40.9     | 94.0           | 1.14    | 1.75         |
| <b>-</b> | 10561          | <u>LI3</u>                                                                            | 1      | 17.1     |                | 7.      |              |
|          | 1050C          | 6 <b>T</b> 3                                                                          | 1      | 42.5     | 45.0           | 1.46    | c.10         |
|          | 16460          | 6 <b>1</b> 2                                                                          | 1      | 67.1     | 40.00          | . c7    | 1.03         |
|          | 16306          | LT1                                                                                   | 11     | 17.1     | 40.0           | 1:1     | 4.93         |
|          | 10200          | z TC                                                                                  | 1      | 00.6     | 64.7           | . 62    | . 45         |

### PERSONNEL NUISE EXPOSÉRE AND INFROT

THRESHULL LEVEL B-HK PERMISSIELE LEVEL = 90.0 DOA

# FF-1084 USS CANDLESS

|          | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PERS. | SUUND LEVEL<br>McAh H.C. | DAILY<br>ME AT | Nulsa bûsa<br>h.c. |
|----------|---------------|----------------------|-----------------|--------------------------|----------------|--------------------|
|          |               |                      |                 |                          |                | -                  |
|          | 60.505        | LTJU                 | i i             | 12.1 12.4                | • L E          | <b>قده</b>         |
|          | 60201         | LTJO                 | 1               | ひしゅう じきゅじ                | • <b>2</b> U   | .41                |
|          | ELZUU         |                      |                 | <del></del>              |                | — • აყ             |
|          | <b>6C100</b>  | LT                   | 1               | 16.1 75.4                |                | .13                |
|          | 50501         | EN3                  | i.              | 74.5 Yeal                | 1.75           | <b>೨.</b> €8       |
|          | 20c           |                      |                 | ومدو المناو              | 2034           | 2.10               |
|          | 50300         | EN1                  | 1               | 44.1 IUL.4               | ろっちと           | ン・ング               |
|          | 40500         | ŁT3                  | 1               | 14.5 11.6                | -11            | د ۱ ه              |
|          | <u> </u>      |                      |                 | وم <u>دوومنو</u>         | خدمد           | 13                 |
|          | 40260         | L MC                 | 1               | 64.3 41.3                | . 46           | 1.20               |
|          | 30300         | ł k                  | 1               | 74.2 71.5                | • • • 1        | -15                |
|          | 36162         |                      | 1               | 14                       | 4              | . L Å              |
| •        | 30161         | + r-                 | 1               | 05.0                     | • 5 -          | • ~ 4              |
|          | <b>3010</b>   | f (*                 |                 | UN-3 03.L                | .26            | ٠ ځ د              |
|          | كنالا بلك     | ant                  |                 | <u></u>                  |                | 44                 |
|          | 20003         | MEFN                 | 1               | 1.67 2.00                | . 64           | • & 0              |
|          | 20602         | MMFN                 | 1               | 62.1 b:.4                | • 3 3          | • 23               |
|          |               | nefa                 |                 |                          | 54             | 1.14               |
|          | 20600         | MMFN                 | 1               | 1.42 0.00                | . 64           | • 0 0              |
|          | 21504         | nn3                  | 1               | coes youl                | . 64           | 4.01               |
|          | 26563         | <u></u>              |                 |                          | دو مــــــ     |                    |
|          | 20502         | nrs                  | . 1             | 4. Pu                    | . 04           | • 60               |
|          | 20501         | nmi                  | 1               | 65.4 65.9                | • > 3          | •56                |
| <u> </u> |               | ma                   | 1               |                          | 54             | .74                |
|          | 20401         | nn2                  | i               | esac bias                | . 35           | - 56               |
|          | 26466         | តក2                  | 1               | 64.2 76.5                | • Ut.          | .09                |
|          | 16761         | blfa                 |                 | ومند دوده                | 41             |                    |
|          | 10760         | <b>6TFA</b>          | 1               | 67.4 40.3                | . 70           | 1.04               |
|          | 10666         | bTFN                 | 1               | 64.0 80.4                | . 43           | •65                |
|          | 10405         | <u> </u>             | 1               | _ ومعم حمد الم           | 41             |                    |
|          | 10664         | BTFN                 | 1               | ٥٠.٥ د.٥٥                | .46            | . 34               |
|          | 16603         | cTfn                 | 1               | 63.5 65.4                | . 41           | •¢1                |
|          | luocz         | <u> bIFN</u>         | 11              |                          | 0 اد م         |                    |
|          | 10661         | cTFN                 | 1               | 64.0 66.4                | . 43           | •65                |
| ,        | 10600         | BTFM                 | ī               | 62.4 63.3                | . 35           | • 52               |
|          | 16561         | 13                   | ì               | 1402                     | د۔ ہ           | دد.                |

Report 4735 --- Bolt Beranek and Newman, Inc.

ENSURHLE NUISE EXPUSERE AND IMPACE

THRESHULD LEVEL = 80.0 DDA 8-HR PERMISSIBLE LEVEL = 90.0 DDA EXCHANGE RATE = 5 DEA

# FF-1084 USS CANDLESS

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. OF<br>Pers. | SUUNJ  | LEVEL<br>M.C. | NATEL P | UISE BUSE<br>Hele |
|---------------|----------------------|-----------------|--------|---------------|---------|-------------------|
| 10560         | ь <b>Т</b> 3         | 1               | 63.0   | LC . 4        | .41     | •01               |
| 10460         | υTŻ                  | 1               | 01.0   | U4.7          | • 34    | • 4 6             |
| 16360_        | ŁI1                  |                 | _دمدهـ | و میلی        | 41      |                   |
| 10201         | ьтс                  | 1               | 74.5   | 04.4          | ذ نے ہ  | • 35              |
| 16200         | ьTС                  | 1               | 14.0   | 11.4          | • 14    | .17               |

K-4

*v*--

a Taranta Maria

#### PERSUNNEL NUISE EXPLOURL AND ITERALT .

THE SHULU LE VEL B-HK PERMISSIBLE LEVEL = 40.0 LLA -txuHAhbe-k+It----

# FF-1090 USS AINSWORTH

| <br>GRADE<br>CODE     | GRADE<br>DESCRIPTION | NU. GF<br>PERS. | 04 4N           | LEVIL<br>Hoto | DAILY | N-131 0631                                                                   |
|-----------------------|----------------------|-----------------|-----------------|---------------|-------|------------------------------------------------------------------------------|
| 6(100                 | LT                   | i.              | 73.6            | 70 · C        | 1.05  | 2.44                                                                         |
| 40601                 | EMFII                | <b>A</b>        | 64.6            | 00 . U        | . 4 3 | • > 7                                                                        |
| <br><b>-</b>          | Ł#FN                 |                 |                 | <del></del>   | 45    | · · ->7                                                                      |
| 40500                 | t Ma                 | 1               | £4.0            | ರಿಒ 🗸 🗸       | . 43  | .51                                                                          |
| 20700                 | MMFA                 | <b>A</b>        | 10.4            | 0b            | .20   | . 11                                                                         |
| <br>                  |                      |                 |                 | 76.5          |       | 15                                                                           |
| 20061                 | MEN                  | 1               | ±4.0            | bo . u        | . 4 3 | .57                                                                          |
| 20566                 | MMEN                 | 1               | ( Y • U         | 91.0          | . 67  | 1.15                                                                         |
| <br>ـــ ـــ 265 مــــ | tnttnd               |                 | لاجديد          | 41-6 -        |       |                                                                              |
| 20501                 | nn3                  | 1               | しず・じ            | 91            | . 67  | 1.45                                                                         |
| 20500                 | MA 3                 | 1               | 64.0            | 41.0          | .07   | 1.15                                                                         |
| 26462                 | title                |                 | ۔ بار کا بد ۔۔۔ |               | . 47  | 1.15                                                                         |
| 21.461                | ro# Z                | £               | (3.4            | 60.5          | . 4   | • L 1                                                                        |
| 26466                 | Fir 2                | 1               | 5 160           | 14.05         |       | A • A 2                                                                      |
| <br>                  |                      |                 |                 |               |       | ·- · · · · • · · · • · · · • · · · • · · · · · · · · · · · · · · · · · · · · |
| 10702                 | DTFA                 | 1               | 8.60            | 61.4          | .44   | •64                                                                          |
| 10761                 | bTfA                 | 1               | 65.6            | 87.4          | .54   | • 37                                                                         |
| <br>10300 _           | ETEL                 |                 | 7>-7_           | دهدند         | 4     | 40                                                                           |
| 16666                 | ETFN                 | 1               | ع و د ن         | 51.4          | • 42  | • 6 7                                                                        |
| 10500                 | εT3                  | ī               | 04.0            | ن ت و د       | ڏو •  | • 55                                                                         |
| <br>                  |                      |                 |                 |               | 42    |                                                                              |
| 10400                 | ьТС                  | 1               | 64.7            | 05.5          | • 40  | .14                                                                          |

### PERSUNNEL NUISE EXPUSERE AND IMPAUT

THRESHOLD LEVEL = 60.0 LUA 6-MK PERMISSIBLE LEVEL = 90.0 LUA EXCHANGE KATE = 5 JUA

# FF-1091 USS MILLER

| GRADE<br>CODE | GRADE<br>DESCRIPTION                   | NU. OF<br>PEKS. | MEAN<br>Suunu | LEVEL<br>W.L. | DAILY<br>ME AN | Nulse puse |  |
|---------------|----------------------------------------|-----------------|---------------|---------------|----------------|------------|--|
| 60200         | LTJG                                   | 1               | 17.6          | 71            | .13            | •21        |  |
| 60100         | LT                                     | 1               | 13.1          | 76.6          | • • 0          | • 16       |  |
|               |                                        |                 |               |               | ــــه ناد      | بادويت     |  |
| 20601         | nnen                                   | 1               | 0.43          | 41.4          | .67            | 1.32       |  |
| 20600         | MMFN                                   | 1               | 64.0          | 44.4          | .67            | 1.30       |  |
| 21461         |                                        |                 |               |               | 94             | 4.41       |  |
| 20460         | Pr Z                                   | 1               | 64.3          | 41.5          | . 46           | 4046       |  |
| 26300         | Bril 1                                 | 1               | 70.E          | 93.5          | 1.09           | 2062       |  |
|               | nr.c                                   |                 | - Loie -      | نموو_         |                | 1.73       |  |
| 10702         | BTFA                                   | 1               | <b>23.</b> 5  | 72.5          | . 65           | 1.30       |  |
| 10701         | STFA                                   | 1               | 60.1          | 44.6          | .7/            | 1.20       |  |
| 10166         | III III III III III III III III III II | 11              | . فاحلت       | . ~ 4 . 5     | 4              | . 4 /      |  |
| 10007         | cles                                   | 1               | 67.7          | 40.4          | • 4 1          | أد• ∡      |  |
| 16668         | oTFie                                  | 1               | U O . 4       | 4 4           |                | 4.000      |  |
|               | LIFN                                   |                 | 7             |               | 32             | 1.50       |  |
| 16064         | t1FN                                   | 1               | 6306          | t7            | • >1           | د ه و      |  |
| 16663         | bTFH                                   | 1               | co.4          | 41.4          | . = 0          | 1.50       |  |
| 10662         | LIFA                                   |                 |               | <del> </del>  | ٤ء             | 1.35       |  |
| 10601         | BTFN                                   | i               | £ 3 . 7       | 7606          | 3 .            | 4.35       |  |
| 10600         | BTFN                                   | <b>1</b>        | 64.6          | 01.7          | . 45           | .73        |  |
| 10501_        | EI3                                    |                 |               | YL3           |                |            |  |
| 10560         | 614                                    | 1               | 25.2          | 80.7          | . 5 1          | ذه.        |  |
| 10402         | ET2                                    |                 | 67.5          | 9 0           | . 70           | 4.14       |  |
| 10401         | 1/                                     |                 |               | <u> </u>      |                | 1.5c       |  |
| 10400         | L12                                    | _               | 64.7          | 42.2          | . 40           | 1.50       |  |
| 10301         | tT1                                    | ì               | 6/.5          | 4.00          | .70            | 1.4        |  |
| 17376         | ŁĪi                                    | i               |               | A_A           |                |            |  |
| 10200         | вТС                                    | 1               | 06.0          | 90.1          | .62            | 1.01       |  |

· Trianing Cabina

#### PERSONNEL MOISE EXPOSURE AND IMPACT

THELSHULD LEVEL = BUOL JUA 8-HK PERMISSIBLE LEVEL = 90.0 LOA EACHANGE KALE = 3 U.C

# FF-1097 USS MOINESTER

|   | GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. uf<br>Pēns. | SUUNU<br>Piirn | LEVEL<br>H.L.  | UAILY<br>PEAR | Nulse dese                                |
|---|---------------|----------------------|-----------------|----------------|----------------|---------------|-------------------------------------------|
|   | 40500         | E M3                 | 1               | 17.0           | 61.4           | • 66          | • 33                                      |
|   | 40460         | EM2                  | 1               | 64.0           | 27.6           | . 47          | • = 7                                     |
|   | 46366-        | <u> </u>             |                 |                |                |               |                                           |
|   | 26762         | MMFA                 | <b>1</b>        | <b>23.6</b>    | C 5 . 5        | .41           | • <b>61</b>                               |
|   | 20701         | nnFA                 | 1               | 81.4           | 64.0           | و د .         | . 44                                      |
|   |               | - BREA               |                 |                | 47-            |               |                                           |
|   | 20504         | hr:3                 | 1               | 65.3           | 60.4           | • 54          | .77                                       |
|   | 20503         | nno                  | 1               | 14.5           | 01.5           | • 4 6         | و ز .                                     |
|   | uulk          | <u> Hrij</u>         |                 | Ex.7.          |                |               | ٧٤٠                                       |
|   | 26561         | MM3                  | 1               | 65.5           | : t . Y        | . 53          | • 65                                      |
|   | 26506         | nt.3                 | 1               | 63.3           | cc . 7         | .42           | •63                                       |
|   | 26466         | . miz                |                 | 61.4           | <u>~</u>       | .15           | 4.01                                      |
|   | 26500         | nn1                  | i               | ناووا          | J €            | • > 5         | •:1                                       |
|   | 20260         | r. + C               | 1               | しり。と           | 1              | . 56          | . 12                                      |
|   | 16760         |                      |                 |                | 94.5           |               | دلامهــــــــــــــــــــــــــــــــــــ |
|   | 16663         | e Tf ti              | 1               | 90.4           | 94.9           | 1. UE         | 1.47                                      |
|   | 10602         | LIFN                 | 1               | 45.5           | 160.5          | 2.65          | 4.15                                      |
|   | 10661         | IFN                  |                 | جولاك          | 41.5           |               |                                           |
|   | 10660         | ETFN                 | i i             | 59.0           | 44.8           | .07           | 1.40                                      |
|   | 16563         | eT3                  | <b>A</b>        | 77.8           | 160.3          | 2.43          | 4 5                                       |
|   | 10562         | <u>ь13</u>           |                 |                | 9              |               | لا <b>ده د</b>                            |
| * | 10561         | د آ ن                | 1               | 77.0           | 44.5           | 1.44          | 3.71                                      |
| • | 10500         | ьТ3                  | ī               | 43.0           | 40.4           | 1.04          | 3.00                                      |
|   | 10401         | LI/                  |                 |                | 44.4           |               | 1.97                                      |
| : | 10400         | LT2                  | 1               | U Y . 3        | 94 . U         | . 74          | 1.75                                      |
|   | しいっしい         | ē T 1                | -<br>1          | 45.5           | 1900           | 2023          | 4.15                                      |
|   | 10200         |                      |                 | <u></u>        | 10.00<br>10.00 |               |                                           |

### PENDUNNEL NOISE EXPOSORE AND INFAUT

THRESHULD LEVEL = BUOL DOA 8-HK PERMISSIBLE LEVEL = 90.0 LDA EXCHANGE RAIL = 5 LEA

# FF-1094 USS PHARRIS

| <br>·            | <del></del>             |       |                                          |             |                                          |              |
|------------------|-------------------------|-------|------------------------------------------|-------------|------------------------------------------|--------------|
| GRADE            | GRADE                   |       |                                          | LEVEL       |                                          | NUTSE DUST   |
| <br>CODE         | DESCRIPTION             | PERS. | MEAN                                     | H. C.       | MEAN                                     | hete         |
| 56360            | eN1                     | 1     | ***                                      | ***         | ••(                                      | ± • € 9      |
| 46766            | EMFA                    | 1     | 14.2                                     | 10.0        | •11                                      | . 14         |
| <br>4C5U1        | EM3                     |       |                                          |             | ىك مى ــــــــــــــــــــــــــــــــــ | تام و المسلم |
| 40500            | EM3                     | 1     | 14.7                                     | 15.6        | • 1 4                                    | .14          |
| 40400            | EH2                     | 1     | 14.3                                     | 71.0        | . 23                                     | • 4          |
| <br>31116        | EN                      |       |                                          | لا معت      |                                          | 49           |
| 21062            | # MEE IN                | 1     | 64.6                                     | 4.00        | . 64                                     | 4.45         |
| 26661            | nmen                    | 1     | とり。い                                     | 4           | .37                                      | تهولا        |
| <br>             | nrfa                    |       |                                          | <del></del> | 54                                       |              |
| 20567            | nr.j                    | 1     | 04.6                                     | 4.06        | • 5 7                                    | 1.15         |
| 20566            | nn3                     | 1     | 01.3                                     | 67.5        | . 54                                     | •45          |
| 26563            | lang lilibili libili li |       | ا د د ا به ۱۰۰                           | والمرائد ا  | 464                                      | ي پ ₀        |
| 26564            | No. 3                   | 1     | 6406                                     | 7.06        | وان و                                    | 4.45         |
| <b>というし</b> ら    | 147° 3                  | 1     | 66.4                                     | 6.01        | • 0.1                                    | • 5 €        |
| <br>ـــدنادنا    |                         |       |                                          | <del></del> | فلامنسب                                  |              |
| 20561            | Mh3                     | 1     | 16.3                                     | 74.9        | • 64                                     | .12          |
| 20500            | mmi                     | 1     | *44                                      | ***         | • 0 -                                    | しゅりし         |
| <br>             | mm2                     | 1     | _ ئــ / ئـــــــــــــــــــــــــــــــ | لاملائه     | <b>يا ع م</b> ـــــ ــــ                 | نوه ي        |
| 20460            | mme                     | 1     | 6402                                     | 7.00        | • 27                                     | 15           |
| 2000             | nnl                     | 1     | 67.3                                     | 67.9        | • 69                                     | • 9 0        |
| <br>             | <u> </u>                | 1     | <u> </u>                                 | _yeat_      |                                          |              |
| 10061            | ETFR                    | . 1   | 40.1                                     | 42 . E      | 1.01                                     | 1.47         |
| 16660            | БТЕК                    | 1     | 90.1                                     | 46.0        | 1.1                                      | 4.47         |
| <br><u>ivel7</u> | EIEN                    |       |                                          |             |                                          | 1.47         |
| 10666            | eTFN                    | 1     | boot                                     | 4.00        | 1.4                                      | 1.47         |
| 10665            | etfin                   | 1     | 70.1                                     | 92.0        | 1.01                                     | 1.41         |
| <br>10664        | LIFA                    |       |                                          |             |                                          | 47           |
| 10603            | ETFA                    | 1     | 69.9                                     | 40.05       | . 44                                     | 4.44         |
| 10602            | ETFN                    | 1     | 90.1                                     | 42.et       | 1.1                                      | 1.47         |
| <br>             | LIFA                    |       |                                          | حمدت        |                                          |              |
| 10660            | LTFN                    | 1     | 04.7                                     | 76.5        | . 47                                     | 4.30         |
| 10503            | <b>13</b>               | 1     | Yuel                                     | 46.0        | 1.01                                     | 1.41         |
| <br>10502        | <u>.13</u>              | 1     | المحما                                   | £7.0        |                                          | د1ه          |
| 10501            | <b>6 1</b> 3            | 1     | 90.1                                     | 46.05       | 1.11                                     | 1.47         |
| 10500            | <b>د</b> 13             | i i   | 40.1                                     | 4-06        | 1.1                                      | 2.41         |
| 10461            |                         |       | الأمندوا                                 |             |                                          |              |

|   |                         |                                                   |                                                |           | <b></b>     |                |       |
|---|-------------------------|---------------------------------------------------|------------------------------------------------|-----------|-------------|----------------|-------|
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         | PERJU                                             | INNEE NULSE EXPU                               | SUNL AND  |             |                |       |
| - |                         | 8-HK                                              | SHULU LEVEL<br>( PERMISSIBLE LEG<br>MANGE RATE | 16L = 40. | O UEA       |                |       |
|   | •                       |                                                   | FF-1094 USS                                    | PHARRIS   |             |                |       |
|   | GRADE<br>CODE           | GRADE<br>DESCRIPTION                              | Nu. UF<br>Penj.                                | DUND      |             | DALLY<br>FIGAL | # • L |
|   | 10400<br>10301<br>10300 | ET2<br>ET1<br>——————————————————————————————————— | 1<br>1                                         |           | 76.0        |                | 4.    |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           | <del></del> |                |       |
|   |                         | ~ · · · · · · · · · · · · · · · · · · ·           |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                | <u></u> . |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
| - |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |
|   |                         |                                                   |                                                |           |             |                |       |

Manager and the same

# MERSENNEL NOISE EXPOSURE AND IMPACT

THRESHULD LEVEL = CLOU CEA 8-NK PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE ENTE

# FF-1085 USS BEARY

|   |                 |                      | FF-1009 033     |                                  |         |                |
|---|-----------------|----------------------|-----------------|----------------------------------|---------|----------------|
|   | GRADE<br>CODE   | GRADE<br>DESCRIPTION | NÚ. UF<br>Pers. | SOUND LEVEL NEAT HOLD            |         | MUTTE UCZE     |
|   | 10 د ناه        | EN3                  | 1               | 71.4 42.1                        | 1.1     | د ٠ ٠ ٠        |
|   | 60300           | د ۲۰۱۸               | 1               | 69.7 EY.4                        | د ی و   | • 46           |
|   |                 |                      |                 | <del>74.0</del> <del>7</del> 4.6 |         |                |
|   | 60100           | LT                   | i.              | 60.1 57.1                        | . 58    | • t y          |
|   | 50600           | ENFN                 | 1               | 97.0 100.9                       | 6.74    | 4.50           |
| _ | 50566           | EN3                  | <u> </u>        | . دمدیال کمینال                  | 4 - 4 6 | 6.45           |
|   | 50366           | ENI                  | 1               | 40.0 101.7                       | 2067    | シャジレ           |
|   | 40666           | EMFN                 | À               | tury lucal                       | 2.01    | 4.65           |
|   |                 |                      |                 | u                                |         | 4066           |
|   | 40460           | £M2                  | 1               | 4.64 6.40                        | . 44    | 1.55           |
|   | 3020U           | FA                   | 1               | 90.9 BUCAL                       | 2.61    | 4.65           |
|   | 36266           | Labrida III.         | 1               | 74                               | . 64    | 1039           |
|   | 20961           | M.M.                 | <u> </u>        | 67.4 9.00                        | •72     | 1.60           |
|   | 26966           | Par.                 | i i             | .0.4 E.e.                        | 1       | . J .          |
|   | 21700           |                      |                 |                                  |         | 4016           |
|   | 20602           | MMÉN                 | 1               | C104 0402                        | 0د .    | • 45           |
|   | 20601           | mmfn                 | 1               | 41.4 44.2                        | 1.21    | نا و ما ا      |
|   | الماميك الماكات |                      |                 | تمنك للمده                       |         | .Lati?         |
|   | 26503           | nm 3                 | 1               | 64.4 91.6                        | • 46    | 1.40           |
|   | 20502           | mh3                  | 1               | 55.4 Eyes                        | .61     | .90            |
|   |                 | <u>6.8.3</u>         |                 | . وماتك حمدك                     |         |                |
|   | 20500           | nm 3                 | <b>.</b>        | 44.4 YU.0                        | 1.04    | ٥٠:٥           |
|   | 20402           | nm2                  | ì               | 79.9 1UJ.J                       | 3.40    | <b>ن . ∪</b> ≿ |
|   | 20401           | nn2                  |                 | دمس دمدم                         | 40      |                |
|   | 26460           | MMZ                  | 1               | 99.3 91.9                        | 20.45   | 2.40           |
|   | 20200           | hat                  | 1               | 43.0 45.U                        | 1.04    | £ . 10         |
|   | 16961           | T                    | 1               |                                  |         | Lait           |
|   | 10900           | ŁT                   | 1               | 4J.8 94.5                        | 1.14    | 1.60           |
|   | 10700           | bTFA                 | 1               | 40.0 44.5                        | 1.12    | 4.06           |
|   | 10600           | EJFA                 |                 | <u> </u>                         |         | 1024           |
|   | 10505           | sT3                  | 1               | 57.1 ILL.S                       | 2.40    | 4.74           |
|   | 10504           | £ <b>T</b> 3         | ī               | 92.9 90.5                        | 1.50    | 6.47           |
|   | 10503           | LT3                  |                 |                                  |         | 1.30           |
|   | 16502           | £ <b>T</b> 3         | 1               | 80.4 87.2                        | • e i   | • 90           |
|   | 10501           | cT3                  | ī               | 90.0 99.5                        | 4       | 1.55           |
|   | .10500          | داء ـ                | <u>_</u>        | ו שול שבפב                       |         | عده د          |

and the state of the

| Repor           | t 4735               |                                       | ·· · · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bolt Ber                | anek an               | d Newman,   | Inc. |
|-----------------|----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------|------|
| - · <del></del> |                      | nana (m. 1911) - Cambard American     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | w. ·                  |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
|                 |                      | INNEL NUIS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
| 2               | THRE                 | SHULD LEV<br>C PERMISSI               | lic<br>Lic Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # 800<br>EL = 900       | 10 - 10A<br>10 - 10BM |             |      |
| ,               |                      | FF-108                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEARY                   |                       |             |      |
| GRADE<br>CODE   | GRADE<br>DESCRIPTION | ۲                                     | U. UF<br>'EKS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JUUNU                   | Hoto                  | LAILY N     | Hees |
| 10301           | £ 11<br>£11          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | •6t<br>1•36 | 1.11 |
|                 |                      |                                       | AND THE RESERVE AS A SECOND CONTRACT OF SECOND CONT |                         |                       |             |      |
| in in in        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | <u>-</u>    |      |
|                 | ·                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -                     |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | •••         |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ·                     |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
| ···             |                      | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
| · · · ·         |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | <del></del> .         |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
| , yes a see or  |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |             |      |
|                 |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en de la companie de la |                       | graden e de |      |
|                 |                      |                                       | K-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                       |             |      |

#### PERSUNNEL NUISE EXPUSERT AND IRRACT .

THRESHULD LEVEL = 80.0 JEA 8-HR PERMISSIBLE LEVEL = 90.0 JEA EXCHANGE ROSE = 5 JUA

# FF-1092 USS HART

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>Pens. | SUUNU   | Hele          | DALLY<br>MEAN | Nulse utie     |
|---------------|----------------------|-----------------|---------|---------------|---------------|----------------|
| 60200         | LTJu                 | 1               | 14.5    | 61.0          | .23           |                |
| 21000         | MMCS                 | 1               | 24.6    | 42.5          | . 64          | 1.46           |
|               | <u>hnfh</u>          |                 | &       | <u> </u>      |               | 4043           |
| 20700         | MMFA                 | 1               | 4201    | 90.5          | 2.02          | 3.40           |
| 20602         | MMFN                 | 1               | 63.0    | 67 . C        | • 36          | •=1            |
| 20601         | ENEN                 |                 |         | _4            | YU            | 4-44           |
| 20000         | MMEN                 | 1               | 7107    | 42.7          | 1.23          | 1.64           |
| 205(4         | Mm3                  | 1               | 1106    | 93.6          | 1.05          | 4.74           |
| 26563.        |                      |                 |         | المناك        |               |                |
| 20502         | nM3                  | 1               | 46.5    | 45.4          | 1.42          | 4.40           |
| 20501         | MM3                  | 1               | 42.5    | 42.4          | 1.42          | 4.45           |
| <b>∠</b> 0500 | ב מת                 |                 |         | لاجنت         | - 41          | • <b>•</b> • • |
| 16665         | s T f t              | 1               | 5 J . 5 | w.7           | - 41          | • 25           |
| 10664         | LIFI                 |                 | 63.2    | 82.7          | . 41          | •::            |
|               | 11I                  |                 | 74.0-   | 4.07.         | 7             | <b></b>        |
| 10602         | LTFR                 | 1               | 6005    | 46.7          | • 62          | 1.10           |
| 10601         | BTFN                 | 1               | 1.65    | 31.3          | • 51          | ٠٥٦            |
| 10600_        | AIEA                 |                 |         | 4.9.          |               | ن ن ن          |
| 11505         | <b>613</b>           | 1               | 10.0    | 06.7          | ۰ د ل         | . 67           |
| 10564         | ET3                  | 1               | とひゅう    | 55            | .61           | • 5 4          |
| 10503         | <u> </u>             |                 |         | 141           | 54            | 75             |
| 16502         | ŁT3                  | 1               | c 9 • 0 | 41.0          | . 45          | 1.20           |
| 10501         | bT3                  | ì               | 04.0    | 6.03          | . 42          | . 04           |
| 10500         | 613                  | 1               | 00      | _ کے متع      | 50            | • 7 0          |
| 10401         | ŁT2                  | 1               | 91.5    | 73.0          | 1.22          | 1.54           |
| 10400         | 612                  | ì               | 10.0    | 71.1          | .14           | • 1 3          |
| 0060          |                      |                 |         |               | 41            | •55            |
| 10100         | ьтсм                 | ì               | 04.6    | دن <b>،</b> د | •40           | • 64           |

The second secon

# PERSUNNEL NULSE EXPOSURE AND IMPAUL

THRESHULD LEVEL = 80.0 JCA 8-HR PERMISSIBLE LEVEL = 90.0 JCA EXCHANGE RATE = 5 DEA

### FF-1081 USS AYLWIN

|          | GRADE | GRADE       | NL. UF   |                           | LÉVEL           | _              | NU156 0056                             |
|----------|-------|-------------|----------|---------------------------|-----------------|----------------|----------------------------------------|
|          | CODE  | DESCRIPTION | PERS.    | MEAH                      | r.:.            | PLAN           | H = U =                                |
|          | 60301 | ENS         | 1        | 40.6                      | 72.0            | 1.03           | 1.54                                   |
|          | 60300 | ENS         | 1        | 64.4                      | 8502            | • 40           | •51                                    |
|          | 6UZÜÜ | LTJ6        |          |                           | <u></u>         | عد             | ٤ ـــــــ ــــــــــــــــــــــــــــ |
|          | 60100 | LT          | 1        | 40.4                      | 4006            | 1.13           | 1.64                                   |
|          | 50600 | ENFN        | 1        | 00.0                      | 91.9            | •63            | 4.30                                   |
|          | 505C0 | EN3         |          | 14.5                      | 24.6            | 3              | 47                                     |
|          | 40300 | EM1         | 1        | 60.9                      | 91.0            | • 6 5          | 1.15                                   |
|          | 20605 | MMFN        | ì        | 01.7                      | 70 a 9          | . 73           | 1.44                                   |
|          |       | MEEN        |          | 42.1.                     | 42.6            |                | بالاحد الد                             |
|          | 20603 | MMFN        | 1        | 60.3                      | 84.5            | .0(            | • 44                                   |
|          | 20602 | MMFR        | l        | 64.3                      | 60.00           | . 34           | • 24                                   |
|          | 20661 | nefs        | 1        | <b>لا م د</b> ال <i>ه</i> | Y L             |                | 2024                                   |
| -        | 20660 | MMEN        | 1        | 6007                      | 40.00           | ده.            | 1.00                                   |
| •        | 20506 | r.h.3       | ì        | . 1.3                     | 40.00           | • <b>t</b> . c | 4.07                                   |
|          | 20505 |             |          | <u></u>                   | <u> Byae</u>    | 15.            |                                        |
| • .      | 20504 | mm3         | 1        | 20.9                      | 46.1            | ・ヒン            | 1.34                                   |
|          | 20563 | nm3         | 1        | とう・ソ                      | .7.1            | • 4 3          | •67                                    |
|          | 20502 |             |          | 27.3_                     | _ <u>90.5</u> . |                |                                        |
| }        | 20501 | nn3         | 1        | 63.4                      | 6/.1            | .43            | · c 7                                  |
| -        | 20500 | MM3         | 1        | 60.9                      | 46.1            | . 55           | 1.34                                   |
|          | 21404 | MAZ         | 1        | 67.3                      | حمينو_          | 40             | 1.07                                   |
| }        | 20403 | Mh2         | 1        | 63.1                      | 65.4            | . 39           | دد.                                    |
| 1        | 20402 | n#2         | 1        | c8.1                      | 91.4            | .77            | 1.21                                   |
|          | 20401 | MM2         |          | buck                      |                 |                | 40                                     |
| 1        | 20400 | nn2         | 1        | 65.6                      | C. 03           | •6¿            | • 0.1                                  |
| į        | 20300 | mm1         | 1        | 90.3                      | 46.06           | 1.4            | 4.35                                   |
|          |       | eIFN        |          | <u> </u>                  | نامان           |                | 1.32                                   |
| •        | 10600 | btfn        | 1        | 92.5                      | 45.4            | 1.41           | Z-11                                   |
| 1        | 10505 | bT3         | 1        | 90.9                      | 43.6            | 1.13           | 4.09                                   |
| <u> </u> | 10504 | <u> </u>    | 1        |                           | Yeall           |                |                                        |
|          | 10503 | ьT3         | 1        | 41.7                      | 94.6            | 1.47           | 4.76                                   |
| •        | 10502 | v T3        | 1        | 44.7                      | 94.0            | 1.47           | 1.40                                   |
| !        | 10501 | bT3         | <u>i</u> |                           | . Scall         | 48             |                                        |
|          | 10500 | ETa         | 1        | 90.9                      | ٥ . د و         | 1.13           | 4.64                                   |
| •        | 10400 | LT2         | ī        | 73.5                      | 46.7            | 1.64           | دد، ٤                                  |
|          | 10300 |             |          |                           | -46.00          |                | 1.40                                   |

#### PERSONNEL NUISE EXPOSERE AND EREFUT

TMRÉSHULU LEVEL = 60°C DEA 8-MR PERMISSIBLE LEVEL = 90°C DDA EXEMANGE RATE = 5 DEA

# FF-1097 USS MOINESTER

| GRADE<br>CODE | GRADE<br>DESCRIPTION  | NU. UF<br>PERS. | いたない<br>アドロンド | H.C.          | ME AN | Nui5: 005. |
|---------------|-----------------------|-----------------|---------------|---------------|-------|------------|
| <br>10605     | ETFN                  | 1               | 59.0          | 9             | • € 6 | 4.55       |
| 11664         | DTFN                  | 1               | 54.(i         | ბ: • <b>⊥</b> | . 44  | .//        |
| <br>10603     | LIEA                  |                 |               | <u> </u>      |       | :i         |
| 11662         | DTFN                  | 1               | 90.0          | 44 . E        | 1.4   | 1.73       |
| 10661         | bTris                 | i.              | 90.1          | 54.3          | 1.02  | 4.64       |
| <br>          | LIEN                  |                 | سنلملاخ       |               | £     | 4.35       |
| 16567         | ET3                   | 1               | 51.7          | 7100          | .73   | 1029       |
| 10566         | 5 <b>T3</b>           | 1               | 7606          | 4             | 1.51  | ا د ه د د  |
| <br>          | 13                    |                 | <u></u>       |               |       |            |
| 10504         | ьТ3                   | 1               | (1.1          | 62.2          | . 4   | • 52       |
| 10503         | ŁĨ٥                   | 1               | 71.4          | 44            | 4021  | 4.79       |
| 10562         | للا لللللا المال فآفا |                 | . بامدو.      | >444          | 1.25  | 45         |
| 11561         | L13                   | i               | 74.5          | 44.5          | 4045  | 1075       |
| 10500         | 5T3                   | 1               | -1.7          | 5 A . 5       | . 13  | 4067       |
| <br>10463     | 1                     |                 |               | 4             |       | در مد      |
| 10402         | bīz                   | ì               | 94.U          | 95.1          | 4.75  | 3.14       |
| 10461         | υIz                   | 1               | 41.5          | 45.1          | 1.24  | 6.17       |
| <br>10460     | bIZ                   | 1               | المولاع       | ــنمدكـــ     |       | 4.55       |
| 10260         | ε T C                 | i               | 70.0          | 71            | . ( c | • € €      |

- Vinitaling Vide- III

#### PERSONNEL NUISE EXPOSURE AND APPAUL

THRESHULD LEVEL = 80 .0 DDA 6-MR PERMISSIBLE LEVEL = 90.0 JEA EXCHANGE MATE = 5 UCA

# FF-1075 USS TRIPPE

| GRADE<br>CODE   | GRADE<br>DESCRIPTION | NU. UF<br>PERS.         | SUUNL<br>FILAN                            | LLVEL<br>n.l.  | MLAN  | MO152 DUSE |
|-----------------|----------------------|-------------------------|-------------------------------------------|----------------|-------|------------|
| 00 £ 0 £        | FR                   | 1                       | ٥.υ٥                                      | <b>د . د</b> ع | 1     | • 45       |
| 26706           | MMFA                 | 1                       | 65.0                                      | ئ • ئ ت        | . 54  | .79        |
| <u></u> . 20e62 | Nr.f.i:              |                         |                                           |                |       | .74        |
| 20601           | MHN                  | 1                       | 57.7                                      | 41.7           | . 48  | Lock       |
| 20660           | MEFN                 | i                       | 64.4                                      | 41.7           | . 45  | 1.20       |
|                 |                      |                         | 41.6                                      |                | 1.15  | 1.52       |
| 20400           | nn2                  | 1                       | و و د ت                                   | 55.i           | . 39  | • > 1      |
| 10700           | ETFA                 | ì                       | 90.0                                      | 93.0           | 1.07  | 1.51       |
| 10661           | EIFN                 |                         |                                           |                | 1.7   |            |
| 1660            | ETHI                 | 1                       | ٤7.5                                      | 90.0           | .11   | 1.31       |
| 10501           | v13                  | 1                       | 40.0                                      | 95.0           | 1.07  | 1.51       |
| _ 16560         | 13                   |                         | د مالــــــــــــــــــــــــــــــــــــ | بالمالا        |       | 1.0.       |
| 10462           | £12                  | 1                       | 9.00                                      | 4:00           | 4.647 | 4 . 5 4    |
| 10401           | ST2                  | $\overline{\mathbf{i}}$ | 61.5                                      | 7. • **        | ./1   | A • • A    |
| 11.460          | LI/                  |                         |                                           |                |       | .15        |
| 10300           | εTl                  | 1                       | 02.5                                      | 65.6           | •53   | .15        |

# APPENDIX L

Grade Average Noise Exposure Results for Each Ship Using General Area Average Noise Levels

| - | -             |                                         |                                                 |                                            |                                                  |                  |            |
|---|---------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------------|------------------|------------|
|   |               | TMKE 5                                  | NÚISÉ EXPUSURE<br>HULD LEVEL<br>PERMISSIBLE LEV | = 80                                       | • U J. A<br>• U J. B                             |                  |            |
|   |               | EXCHA                                   | INGE RATE                                       |                                            | <del>-                                    </del> | <del></del>      |            |
|   | ·             |                                         | FF-1083 USS                                     | COOK                                       |                                                  |                  |            |
|   | GRADE<br>CODE | GRADE<br>DESCRIPTION                    | NU. UF<br>PERS.                                 | SUUNU<br>REAR                              | 2.1.<br>FEATF                                    | ME An            | No.15c 00: |
|   | 203           | Pre-1                                   | 2                                               | 06.2                                       | ن د د                                            | • 0 3            | •42        |
|   | 164           | eT2<br>—6184                            | 4                                               |                                            |                                                  | ن ن .<br>- د ن م |            |
|   | 105           | <del></del><br>ŧТз                      | 1                                               | ـــــــــــــــــــــــــــــــــــــ      | 0.0                                              |                  |            |
|   | 205           | MMS                                     | Ž                                               | 64.5                                       | 6.0                                              | •50              |            |
|   |               |                                         |                                                 | <u></u>                                    |                                                  | 41               |            |
|   | 207<br>206    | MMFA<br>MMFN                            | 1                                               | 66.4                                       |                                                  |                  | = -        |
|   |               | _ BMZ                                   | <del>-</del>                                    | ت∠<br>ـــــــدن.ــــــــــــــــــــــــــ |                                                  |                  |            |
|   | 602           | LTJ6                                    | i                                               | 16.6                                       |                                                  |                  |            |
|   |               | * * *** · * * · · · · · · · · · · · · · |                                                 |                                            | -                                                |                  |            |
|   |               |                                         |                                                 |                                            |                                                  |                  |            |
|   |               |                                         |                                                 | <del></del>                                |                                                  |                  |            |
|   |               |                                         |                                                 |                                            |                                                  |                  |            |
|   |               | •                                       |                                                 |                                            |                                                  |                  |            |
|   |               | •                                       |                                                 |                                            |                                                  |                  |            |
|   |               | 1                                       |                                                 |                                            |                                                  |                  |            |
|   |               |                                         |                                                 |                                            |                                                  |                  |            |
|   |               |                                         |                                                 |                                            |                                                  |                  |            |
|   | •             |                                         |                                                 |                                            |                                                  |                  |            |
|   |               |                                         |                                                 |                                            |                                                  |                  |            |
|   | •             |                                         |                                                 |                                            |                                                  |                  |            |
|   |               |                                         |                                                 |                                            |                                                  |                  |            |

L-1

Ĺ

# PERSUNNEL NUISE EXPUSUR. AND IMPAUT AVERAGES

THRESHULD LEVEL 8-MK PERMISSIBLE LEVEL = 90.0 004 EXCHANGE RATE

#### FF-1065 USS STEIN

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PEKS. | SUUND<br>REAN | PEAFT | DAILY       | ><br>>       |
|---------------|----------------------|-----------------|---------------|-------|-------------|--------------|
| 206           | MMEN                 | 3               | 91.2          | ۷.5   | 1.63        | • 43         |
| 204           | mm2                  | ا               | 90.9          | 3.2   | 1.20        | •4c          |
| <br>203       | nni                  | 3               | ٤9.3          | 6.3   | 1.13        | - 66         |
| 105           | 873                  | 3               | 00.0          | د ه ه | . 91        | • tu         |
| 205           | mm3                  | ь               | c7.9          | 4.1   | . 04        | 3 E •        |
| <br>103       |                      |                 | 87.1          | 6.0   | +67         | - L ~ U C    |
| 104           | bTZ                  | 1               | 67.1          | 0.0   | . t 7       | 6.00         |
| 107           | BTFA                 | 4               | £7.1          | U • U | ·c7         | 6.30         |
| 361           | ŁN                   |                 | <b>67.1</b>   | U.U   | <b>~</b> &7 | 6.06         |
| 102           | ьTC                  | 1               | .0.6          | 5.0   | •64         | 6.30         |
| 106           | bTFA                 | 3               | ٤4.7          | £ . 5 | .01         | .42          |
| <br>2ناف      | EA                   |                 | . 63.9        | 0.0   |             | 45.          |
| 202           | mmC                  | i               | ****          | ****  | ا ن •       | J . U C      |
| ちじる           | EN1                  | 1               | *****         | ****  | • 6.0       | 4.50         |
| <br>565       |                      | <b></b>         | ****          | ***** | بالتميية    | نالاماء يستا |

WINDS TO STATE OF THE STATE OF

### PERSONNEL NUISE EXPOSORL AND IMPAUL AVERAGES

THRESHOLD LEVEL = 80.0 UDA 6-HK PERHISSIBLE LEVEL = 90.0 UDA EXCHANGE RATE = 5 UDA

# FF-1084 USS CANDLESS

|              | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PERS. | SUUND  | LEVEL<br>Sout | UALLY<br>MCAN | Nulsc 003:     |
|--------------|---------------|----------------------|-----------------|--------|---------------|---------------|----------------|
|              | 563           | EN1                  | 1               | 77.1   | 6.0           | 2002          |                |
|              | 505           | LNS                  | 2               | 75.5   | . 4           | 6.15          | • 4 5          |
|              | 464           | _ ERc                |                 |        | <del></del>   |               | بالأولاد والما |
|              | 402           | EMC                  | ì               | 64.3   | U . U         | • 40          | 0.00           |
|              | 207           | MMFA                 | 1               | 00.5   | しゅじ           | • < 1         | 0.00           |
|              |               | MREN                 |                 |        | <del></del>   | 61            |                |
|              | <b>4(5</b>    | MMS                  | 5               | ジン。タ   | 1             | • > 7         | • 60           |
|              | 107           | ETFA                 | 2               | 63.4   | 2.7           | • > >         | .26            |
|              | 63            |                      |                 |        |               | 41            | فأنفه خدا سالت |
|              | 106           | ETFN                 | 7               | 64.4   | ذوذ           | 8             | .66            |
| •            | 104           | t T c                | 1               | cleb   | با ہ ب        | • 32          | 0.00           |
| -            | 115           | . ــ. ـ              |                 | . دممع | ٧ ۾ ـــ       | عدد           | **4            |
|              | 361           | ł K                  | 3               | 11.5   | 7 • 4         | 7             | • 4            |
|              | e l z         | こてはつ                 | و               | 10.5   | U . 1         | ا نه ه        | • k e          |
|              | L 4           |                      |                 | 4006   | <u></u>       |               | 4              |
|              | 102           | 516                  | 2               | 77.0   | 3.5           | .17           | • ८८           |
|              | 405           | EM3                  | 1               | 74.5   | J • 0         | • 41          | じゅせい           |
| ;            |               |                      |                 |        |               | 1             | #.             |
| ر.<br>5<br>4 | 601           | LT                   | 1               | 12.1   | 2 .0          | • 60          | 0.60           |

Partition of Action of Principles

L-4

THE PROPERTY OF THE PARTY OF TH

### PERSONNEL NUISE EXPUSURE AND IMPACT AVENHULS

THRESHULD LEVEL B-HR PERMISSIBLE LLVEL = 40.0 DEA EXCHANGE KATE

### FF-1091 USS MILLER

|                                       | GRADE<br>CODE |                      |     |                 |   |                |               |               |               |  |
|---------------------------------------|---------------|----------------------|-----|-----------------|---|----------------|---------------|---------------|---------------|--|
|                                       |               | GRADE<br>DESCRIPTION | n – | NO. UF<br>PERS. |   | SUUNU<br>ME AN | LEVEL<br>S.U. | DAILY<br>BEAN | Nulla 000.    |  |
|                                       | 202           | MMC                  |     | 1               | i | <b>71.1</b>    | U.C           | 1.10          | <b>↓.</b> U € |  |
|                                       | 203           | nn l                 |     | 1               | į | 40.6           | 0.6           | 1.09          | U . U .       |  |
| <b>.</b>                              | 204           |                      |     |                 |   | 59.4           | • 2           |               | 463           |  |
|                                       | 104           | ET2                  |     | 3               |   | 64.0           | 1.3           | . 57          | .10           |  |
|                                       | 206           | MMFN                 |     | Ż               | l | 04.0           | 6.0           | · £7          | ノ・じじ          |  |
| · · · · · · · · · · · · · · · · · · · | ــــ عود      | LIEN                 |     |                 |   | 07.4           | 4.1           | 17            | -14           |  |
|                                       | 163           | t T l                |     | 4               | ! | 67.1           | • 5           | .c?           | • U⊅          |  |
|                                       | 167           | DTFA                 |     | 3               |   | 00.0           | 4.3           | • ¢ 3         | • 36          |  |
|                                       | 102           | LTC                  |     |                 |   | 00.6           | L.O           | 442           | کایا ہاکا ۔   |  |
|                                       | 105           | E Ta                 |     | 4               |   | 0.05           | 1.1           | . 5 &         | ون .          |  |
|                                       | 602           | LTJG                 |     | ì               |   | 70.2           | 0.0           | 3             | 0.05          |  |
|                                       | ell .         | LI.                  |     |                 |   | 13.1           | U • O         | 445           |               |  |
|                                       | 4 U 3         | 2 M l                |     | 1               | 4 | ****           | *****         | • • ()        | J • 5 4       |  |

Report 4735 --- Bolt Beranek and Newman, Inc.

### PERSONNEL NUISE EXPUSURE AND IMPAUL AVERAGES

THRESHULD LEVEL = 00.0 DOR 8-HR PERMISSIBLE LEVEL = 90.0 DBA EXCHANGE RATE = 5 DEA

### FF-1097 USS MOINESTER

| GRADE<br>CODE                              | GRADE<br>DESCRIPTION | NU. UF<br>PERS. | SUUNU   | TFATE  | HEAN       | 2.00<br>Multipe mg2:         |
|--------------------------------------------|----------------------|-----------------|---------|--------|------------|------------------------------|
| <br>102                                    | tTC                  | 1               | マン・0    | U • U  | د. د ع     | _ <b>.</b>                   |
| 163                                        | £T1                  | 1               | 45.6    |        | 2023       | <b>0 •</b> 0€                |
| <br>1£7                                    | IF&                  |                 | لامدنا  |        | 1.99       | الأنامط                      |
| 105                                        | LT3                  | 4               | 94.7    | . 4    | 1.73       | . 4                          |
| 166                                        | LTFN                 | 4               | 46.2    | غه د   | 1.44       | .61                          |
| <br>104                                    | _tIż                 |                 | _ برايو |        | 1.46       | <b>.</b> le                  |
| £ ( 4                                      | hM2                  | ì               | 67.9    | ن و د  | . 75       | 6.25                         |
| 2 C Z                                      | MMC                  | 1               | しじゅぎ    | J . U  | • >6       | <b>0.</b> 00                 |
| <br>ــــــــــــــــــــــــــــــــــــــ | Mn3                  | <u></u>         | 4.0     |        | <b>دده</b> | . 4 1                        |
| 267                                        | MPFA                 | 3               | 04.7    | د و د  | • 54       | • 26                         |
| 4( 5                                       | ł Mi                 | i               | とって     | 0.0    | • > 4      | $\psi \bullet \phi \epsilon$ |
| 464                                        | EM2                  |                 |         | '- • · | .47        |                              |
| د) ع                                       | no1                  | 1               | ٨٠ ت    |        | • 3 C      | J (                          |
| 465                                        | z M o                | 1               | 1706    | . • •  | • 4 6      | <i>3</i> • €                 |

L-6

and the state of

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

the state of the s

المراب والمربول والمستوال والمستوال والمستوال والمستوال والمستوال والمراب والمستوال وا

THRESHOLD LEVEL = DU.U DOA 8-HR PERMISSIBLE LEVEL = 90.0 DUA EXCHANGE RATE - > 5 484

# FF-1094 USS PHARRIS

| <br>GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PERS. | SUUNU<br>NEAN | S.U.         | DAILY     | Nulse bose<br>Seue |
|-------------------|----------------------|-----------------|---------------|--------------|-----------|--------------------|
| <br>106           | tTfn.                | 3               | 90.1          | 6.6          | 1.01      | 5.647              |
| 104               | LT2                  | 2               | 40.0          | • 4          | 1.00      | <b>د</b> ∪ •       |
| <br>106           | 51E4                 |                 | 07.0          | • 5          |           | -61                |
| 105               | έΤο                  | 4               | 5000          | 2.5          | . 64      | • 45               |
| 204               | MM2                  | 2               | 5.60          | 1.3          | .79       | -14                |
| <br>              | MMFA                 |                 | 01.4          | 2.0          |           | 44                 |
| د ۱۰ ع            | nr1                  | 1               | c7.3          | <b>U .</b> Ú | • 0 9     | U . 70             |
| 205               | hm3                  | ь               | 50.U          | 6.4          | .61       | ه و ه              |
| <br>103           | tI1                  |                 | , e0.6        | 1.1          |           |                    |
| 301               | +14                  | 1               | 66.3          | U . U        | <b>د.</b> | ن ن ن ن ن          |
| 4(14              | EM2                  |                 | 74.3          | U . U        | ق ۽ ه     | ೮೯೮೮               |
| . 467             | L MF 4               |                 | . 74.2        | Ú <b>.</b> Ú | • • 1     | بايا ۾ پ           |
| 415               | £ M 3                | 4               | 14.7          | U • Ü        | •95       | • ८८               |
| 563               | 1. 杨玉                | 1               | ****          | *****        | • 5 5     | د وا به دا         |

#### PERSUNNEL NUISE EXPUSURE AND IMPAUL AVERAGES

THE SHULL LE VEL - 60.0 002 6-HR PERMISSIBLE LEVEL = 90.0 UDA EXCHANGE RATE

### FF-1085 USS BEARY

| (DADE         | Nu. UF SUUN          |          |          | LEVIL        |             | -<br>- No.156 - DOSE |  |
|---------------|----------------------|----------|----------|--------------|-------------|----------------------|--|
| GRADE<br>CODE | GRADE<br>DESCRIPTION | Pers.    | ME AN    | 3.0.         | MEAN        | 7.00                 |  |
| 505           | LN3                  | ì        | 1.0.2    | <b>4 4 0</b> | 4.16        |                      |  |
| 503           | cNl                  | 1        | 70.5     | U . U        | 3.27        | U . U1.              |  |
| 506           | <u> </u>             |          | 41.5     | نده ند       | 44.         |                      |  |
| <b>30</b> 2   | FA                   | 1        | 70.7     | 0.00         | 2.61        | <b>0 • €</b> €       |  |
| 406           | EMEN                 | 1        | 90.4     | L . U        | <b>∠.01</b> | 0.00                 |  |
|               |                      |          | لمدير    |              |             | 4.15                 |  |
| 20.           | MMC                  | <b>.</b> | 73.0     | ن ۾ ان       | 1.04        | U . U.C              |  |
| 165           | ьT3                  | L        | 12.3     | 3.4          | 1.54        | •ti                  |  |
|               | Enn3Enn              | 4        | لا مندلا | . 7مد        | فعمل        | ت د ه                |  |
| 267           | MMFA                 | 1        | 71.5     | <b>⊍ .</b> ∪ | 1.23        | U-01                 |  |
| 167           | ETFA                 | 1        | 40.0     | 6.6          | 1.12        | 0.00                 |  |
| 109           | £1 .                 |          | دوروا    |              | 1.12        | 0.04                 |  |
| 66.3          | ENS                  | 4        | 4000     | د . ـ        | /           | ٠ ٤ ٠                |  |
| 1(3           | ι <b>1</b> 1         | 4        | -4.1     | ن و د<br>د د | 4002        | •45                  |  |
| 414           | <u>tnz</u>           |          |          |              | a y 4       |                      |  |
| 301           | FN                   | ì        | 00.5     | 6.6          | . 64        | 6.00                 |  |
| 405           | EM3                  | 1        | 60.5     | U . U        | • 62        | 6.06                 |  |
| 209           | n                    |          | د ۱۵ د   |              |             | -22                  |  |
| 266           | MMFIL                | ٤        | 61.0     | ۱. د         | .16         | • 4 7                |  |
| 301           | bTFN                 |          | ٧7.9     | <b>.</b> . 0 | . 15        | 0 • C C              |  |
| £01           |                      |          |          |              | bë          | نا يُا ۾ ه           |  |
| 602           | LTJG                 | , l      | 14.0     | 0.0          | • 14        | <b>0.00</b>          |  |

#### PERSUNNEL NUISE EXPUSURE AND IMPACT AVERAGES

THRESHOLD LEVEL = Bu.C. JOA 8-HR PERMISSIBLE LEVEL = 90.C. JCA EXCHANGE PATE

# FF-1081 USS AYLWIN

| GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF<br>PEKS. | SUUNU<br>MEAN | LEVEL<br>Sou. | DAILY | NU151 DUSE<br>5.0. |
|---------------|----------------------|-----------------|---------------|---------------|-------|--------------------|
| 104           | LT2                  | 1               | 73.5          | U . U         | 1.64  | . J.O.             |
| 100           | cTfM                 | 4               | 46.0          | . 7           | 1.36  | د 1 -              |
| 601           | LI                   |                 | 44.9          |               | 4.43  | لاك م لد           |
| 105           | ь <b>Т</b> 3         | 0               | 40.6          | 106           | 1.04  | .15                |
| ڈ 20          | nh1                  | ì               | 6000          | 0             | 1.04  | 6.00               |
| 103           | <u>+11</u>           | <u>-</u>        |               |               | 49    | watt               |
| و ن 4         | EP1                  | 1               | 80.4          | <i>i.</i>     | ئن .  | 0.00               |
| 266           | nef r                | 6               | v 7 • 7       | د و د         | .16   | د د ه              |
|               | LNS                  |                 | 61.3          | a_a           | 75    | 4 .                |
| 265           | nn3                  | 7               | ( U • 0       | 4.1           | . u 7 | • 4 6              |
| 50°o          | ENFN                 | 1               | F0.0          | 0 <b>. U</b>  | .63   |                    |
| eUž           | 1116                 |                 | ل کا ہے۔      |               | .56   |                    |
| 264           | N/12                 | 5               | ().1          | د و د         | . 54  | • = 1              |
| <b>りし</b> ち   | £ 1×3                | 1               | 14.5          | 0.0           | • 6 3 | 0.00               |

### PERSURNEL NUISE CAPUSURE AND IMPACT AVERNOUS

THRESHULD LEVEL = 00.0 DEA 8-NR PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5.000

### FF-1097 USS MOINESTER

| ,        |           |                      |                 |       |              |                  |                    |
|----------|-----------|----------------------|-----------------|-------|--------------|------------------|--------------------|
| GR<br>CO | ADE<br>DE | GRADE<br>DESCRIPTION | Nu. UF<br>PEA3. | SJUNL | LL Val       | UAIL Y<br>ME AII | 7.00<br>11152 UUS. |
| 1        | 04        | bT2                  | 4               | 70.9  | ٤.4          | 1.15             | • • • • • •        |
| Ž        | ادد       | MMC                  | 1               | 46.7  | U . U        | 1.01             | <b>0 •</b> 3€      |
|          | Q5        |                      |                 |       |              | \$7.             |                    |
| 2        | G 3       | nhl                  | 1               | 65.6  | U.U          | . 65             | 0.00               |
| 1        | Co        | o <b>T</b> Fii       | 7               | 80.4  | >.6          | .75              | • 3¢               |
| 3        | C 1       | <u>+N</u>            |                 |       |              |                  |                    |
| ż        | C:5       | nn3                  | 7               | とう。う  | 406          | • 45             | . 24               |
| 2        | L7        | MMFA                 | 4               | じょっち  | ン・リ          | . 45             | • 4 4              |
|          | L4        | _nr.2                |                 |       |              | 1                |                    |
| ·        | £ 9       | ENS                  | 1               | 62.7  | 2.0          | . 37             | 0.00               |
| 1        | C 6       | bTFN                 | 2               | 79.0  | 3.4          | . 54             | . 34               |
|          | Lb        | LANFR                |                 |       |              |                  | -15                |
| 5        | l 3       | a fil                | 1               | 7,07  | u.i          | . 14             | S & 25             |
| 1        | 17        | ETFA                 | Ċ               | 1604  | 0            | • ± C            | • 5· 5             |
|          | C         | _&1£                 | <del></del>     |       |              | عبد              | . بالدونة سيسس     |
| 5        | (4        | EN2                  | 1               | 67.5  | <b>∂ • U</b> | . U4             | <b>6.</b> 66       |
| . 6      | Cl        | LT                   | 1               | 63.6  | U . U        | • 63             | 0.00               |
|          | 04        | LCUK                 | _,,             |       |              | المناح           | الأفاول المدالة    |

| Repo | rt | 47 | 35 |
|------|----|----|----|
|------|----|----|----|

Bolt Beranek and Newman, Inc.

#### PERSONNEL NUISE EXPOSORE AND IMPROL AVERNOUS

THRESHULD LEVEL = 80.0 JLA b-nk PERMISSIBLE LEVEL = 90.0 JLA ERUHANGE RAIL = 5 JULA

# FF-1075 USS TRIPPE

|               | GRADE OPEN NO. OF SOUND LEVEL DATEY NO.15E DES |                 |              |               |             |                      |  |  |  |  |
|---------------|------------------------------------------------|-----------------|--------------|---------------|-------------|----------------------|--|--|--|--|
| GRADE<br>CODE | GRADE<br>DESCRIPTION                           | NU. OF<br>Pers. | MLAN<br>MLAN | Livil<br>Solo | DAILY       | NU 151 - UUS<br>3-2- |  |  |  |  |
| 4(5           | mm3                                            | 1               | 9406         | • U           | 1.15        |                      |  |  |  |  |
| 107           | elti                                           | 1               | 40.5         | 4             | 17          | Uaul                 |  |  |  |  |
| 165           |                                                |                 | ے ملا شہہ۔۔۔ |               | والهام ساسا | -25                  |  |  |  |  |
| 166           | 6 <b>T</b> FN                                  | 4               | 67.0         | £ • A         | • 54        | - 4 3                |  |  |  |  |
| <b>200</b>    | enfi:                                          | 3               | C - 4        | 5             | • 6 4       | .25                  |  |  |  |  |
| 104           | LT2                                            | <b></b>         | :7.0         | 4.5           | .17         | .47                  |  |  |  |  |
| 267           | rime 6                                         | 1               | しり。む         |               | .54         | المالية المالية      |  |  |  |  |
| 163           | pT1                                            | 1               | 32.9         | J • C         | • 5 3       |                      |  |  |  |  |
| £64 .         | r.#2                                           |                 | لامند        | يدوسيا .      | لادم        | u a L 🥴              |  |  |  |  |
| 363           | F.A.                                           | <b>.</b>        | 0.00         | ٠.6           | .27         | € • 90               |  |  |  |  |

www.missingvistora.

# APPENDIX M

Individual Noise Exposure Results for All 12 Ships
Using General Area Average Over All 12 Ships
For the Noise Level Data

# PERSUNNEL NUMBE EXPUSURE AND IFFAUL

THRESHULD LEVEL = 80.0 DDA 6-HR PERHISSIBLE LEVEL = 90.0 DDA EXCHANGE RATE = 5.DEC

|          | GRADE<br>CODE | GRADE<br>DESCRIPTION | Nu. OF       | SUUNU LEVEL          |                                          | NUTSE DUSE |
|----------|---------------|----------------------|--------------|----------------------|------------------------------------------|------------|
|          |               |                      |              |                      |                                          |            |
|          | 60400         | LCUN                 | 1            | 64.1 69.5            | • U 3                                    | • UE       |
|          | 60304         |                      |              | Loly Loca            |                                          |            |
|          | とじょじょ         | Ł NŠ                 | 1            | 15.1 80.2            | .51                                      | • 27       |
|          | 60302         | 643                  | 1            | 7.64 4.00            | . 65                                     | 1.65       |
|          |               | ENS                  |              |                      |                                          |            |
|          | 66360         | ENS                  | 1            | C. VO 1.03           | ٥ خ و                                    | .41        |
|          | 66207         | LTJU                 | 1            | 14.5 74.5            | .16                                      | د ۽ ه      |
|          |               | <u> </u>             |              | 14.5 71.0            |                                          |            |
|          | 60205         | LTJG                 | 1            | 15.3 61.1            | . 13                                     | • 24       |
| •        | 60204         | LTJu                 | 1            | 64.4 EC.2            | .43                                      | .54        |
|          | £12413        |                      | 1            | نامەتسىدەلالا . ـ    |                                          | 447        |
| •        | buch          | LT JG                | 1            | 12.5 1.06            | • 1 5                                    | 4          |
| _        | 6 ( c. ( L    | LTJU                 | 1            |                      | ناد .                                    | 424        |
|          |               | <u>I.du</u>          |              |                      |                                          |            |
| • .      | 60165         | LT                   | 1            | 74.5 71.6            | •11                                      | • 1 t      |
|          | 60104         | LT                   | 1            | 90.9 94.1            | 1.13                                     | 10         |
| !        | <u></u>       | <u> </u>             | 1            | 1104 0604            |                                          | 35         |
| }        | 60102         | LT                   | 1            | 67.4                 | ٤ 🕳                                      | •67        |
| •        | 60101         | LĪ                   | 1            | 64.5 94.5            | . ٧٥                                     | 1.07       |
| ,        |               | I                    | <u>1</u>     | Leas Wat             | فلامــــــــــــــــــــــــــــــــــــ |            |
| (        | 50601         | ENFR                 | 1            | 71.6 77.0            | 1.47                                     | 4.03       |
| !        | 56666         | ENFN                 | 1            | 91.0 103.4           | 2.07                                     | 6.46       |
|          |               |                      | <del>1</del> | Water Bate           | 7د مــــــــــــــــــــــــــــــــــــ |            |
| )        | 50505         | LN3                  | 1            | 40.3 LUL.L           | 2.69                                     | 4.01       |
| t        | 56504         | EN3                  | 1            | 90.5 1.4.0           | 3.54                                     | 7.54       |
|          | <u> </u>      | EN3                  |              | . لامنعــــعملاعــــ |                                          | . لالمصند  |
| :        | 50502         | EN3                  | 1            | 41.06 41.00          | 1.17                                     | 6.63       |
| ļ        | <b>5</b> 05C1 | ŁN3                  | ì            | 43.9 44.4            | 1.72                                     | 3.60       |
| ·        | 50500         | 1N3                  |              | TOTAL FORE           |                                          |            |
| ,        | 50400         | LNZ                  | 1            | 61.4 61.7            | . 33                                     | .73        |
| }        | 56364         | ÉNI                  | 1            | 73.6 Y1.6            | 1.57                                     |            |
| <u></u>  | 50363         | <u> </u>             | <u></u>      | <u> </u>             |                                          |            |
|          | 5030∠         | EN1                  | 1            | 45.5 101.1           | 2.09                                     | 4.07       |
| <i>i</i> | 50301         | EN1                  | 1            | 71.7 11.7            | 1.51                                     | 6.46       |
| !        | 50406         | K1                   |              | +++1×                | <b> 4</b>                                |            |
|          | 40700         | LMFA                 | 1            | 14.1 70.1            | . 11                                     | 9 L e      |

# MERSONNEL NUISE EXPOSURE AND INFAUL

THRESHULD LEVEL = 50.0 DEA 8-MK PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 2.00

|             | 22 - 22       |                      |          |               |                           |               |
|-------------|---------------|----------------------|----------|---------------|---------------------------|---------------|
|             | GRADE<br>CODE | GRADE<br>DESCRIPTION | NO. UF   | SUUNU LEGE    |                           | No.152 obse   |
|             |               |                      |          | • -           |                           |               |
|             | 40602         | EMFN                 | 1        | 04.1 00.      | 7 .44                     | • t s         |
| ****        | 46661         | MEN                  |          | <del></del>   | 744                       | دء            |
|             | 40600         | EMFN                 | 1        | 40.3 40.      | 1 1.04                    | 6.34          |
|             | 40565         | EM3                  | 1        | 10.0 70.      | .10                       | .19           |
|             | _44564        | <u>ths</u>           |          | 64.166.       | 144                       | 663           |
|             | 40503         | t M3                 | 1        | 61.4 04.      | y                         | .47           |
|             | 40502         | £#.3                 | 1        | 1903 700      | 1                         | • 15          |
|             | _41211        | <u></u>              |          | 11.4 5        |                           |               |
|             | 40500         | Emb                  | À        | 64.9 00.      | 9 .49                     | • 05          |
|             | 40403         | ENZ                  | 1        | 60.7 41.      | L . L4                    | 3.02          |
|             | 40402         | - the                |          | معتب دملال    | <i>ف</i> ه د              | .41           |
|             | 404(1         | LITZ                 | <b>i</b> | 12.00 15.     | 3 .36                     | • > .         |
|             | 41460         | E MZ                 | <u> </u> | - U 4         | 1 .50                     | (             |
|             | 41.344        | eti                  |          | Luad Blea.    | ·                         | ئ ئى <b>د</b> |
|             | 40301         | EMI                  | 1        | c1.7 41.      | 12                        | 1.17          |
|             | 40360         | E M 1                | 1        | 42.1 44.      | y Zoli                    | 3.46          |
|             | _ 4u20u       |                      | <b></b>  | منط ومعع      | ده م ۵                    | 4.44          |
|             | 30361         | f k                  | À        | 10.4 71.      |                           | • 4 5         |
|             | 30300         | FK                   | Ī        | c1.4 tr.      |                           | • 4 1         |
|             | علندلند       | <u>FA</u>            |          | <u> </u>      |                           | . 4.0/        |
|             | 30201         | + 4                  | 1        | مان الودا     | ٥٤. خ                     | • 6 1         |
|             | 30266         | FA                   | 1        | 90.3 90.      | 1.04                      | 34            |
| <del></del> | 36168         | EN                   | 1        | 440 440       |                           |               |
|             | 30107         | <b>₽</b> N           | 1        | 6403 760      |                           | • 04          |
|             | 30166         | rN                   | 1        | 50.3 06.      |                           | • 50          |
|             | _3u165        |                      |          |               | ا نا نا نا نا نا نا نا نا | 4.14          |
|             | 30104         | FN                   | 1        | 01.4 84.      | ن د و                     | .44           |
|             | 30163         | FN                   | 1        | 05.4 90.4     |                           | 1.05          |
|             | 30162         |                      |          | <u> </u>      |                           | 7 <i>u</i>    |
|             | 30101         | + N                  | ì        | 5/.2 64.0     |                           | • 74          |
|             | 30100         | FN                   | _<br>1   | 61.5 51.      |                           | . 94          |
|             | 21000         | MMCS                 | <u> </u> | - 16 310      |                           |               |
|             | 20901         | mm                   | 1        | 07.1 64.      | _                         | • 45          |
|             | 20900         | an                   | ī        | 64.3 0/.      |                           | . 14          |
|             |               | nnfk                 |          | اميدلا عملاعـ |                           |               |
|             | 26712         | MMFA                 | 1        | unel she      |                           | .4/           |

Report 4735 ------ Bolt Beranek and Newman, Inc.

### PERSONNEL NOISE EXPOSORE AND ITTACT

THRESHOLD LEVEL = 00.0 DDA 8-HK PERMISSIBLE LEVEL = 90.0 DDA FRIMANCE ACTE

|                 | GRADE<br>CODE                          | GRADE<br>DESCRIPTION | NU. OF   |                  | LEFCL<br> |       | NUISE DUSE |
|-----------------|----------------------------------------|----------------------|----------|------------------|-----------|-------|------------|
|                 | 26711                                  | nnf 4                | 1        | <b>50.4</b>      | 42.4      | 1.06  | 1500       |
|                 | 2u710                                  | AMFA                 |          |                  |           | ٠٠    | 41         |
|                 | 20709                                  | MMFA                 | 1        | 66.0             | 84.4      | .57   | .46        |
|                 | 20708                                  | hMFA.                | 1        | 64.5             | 61.0      | . 40  | .14        |
|                 | 26707                                  |                      |          |                  |           |       | •45        |
|                 | 20706                                  | nmfa                 | 1        | Uy.i             | 41.1      | . 64  | 2.27       |
|                 | 20705                                  | nrfA                 | <b>A</b> | 43.0             | 40.5      | 1.50  | 4 • 46     |
|                 | 267.64                                 |                      |          |                  | Yau       |       |            |
|                 | 20703                                  | MMFA                 | 1        | 17.3             | 60.7      | .17   | • 26       |
|                 | 20702                                  | MMFA                 | 1        | 67.5             | 90.7      | .65   | 1.11       |
|                 | 20701                                  | Linf &               |          | د ه لاعــــــ    | 4 4       | - ఓర్ | 4.44       |
|                 | 26766                                  | ntiř A               | 1        | 4                | 67.4      | • 01  | • 7 0      |
|                 | 26639                                  | ninf to              | 1        | 14.5             | 36 . 5    | 3     | . 5 /      |
|                 | العناه الم                             |                      |          |                  |           | 9     | تانمسسسان  |
|                 | 20637                                  | MMEN                 | 1        | Yeal             | 44.0      | 2.33  | 1.90       |
|                 | 20636                                  | MMER                 | 1        | 64.1             | 41.7      | • 64  | 1.47       |
| - <del></del> - |                                        | AAFA                 | 1        |                  | \$akt     |       |            |
|                 | 20634                                  | MMFN                 | 1        | c.s. 7           | 4406      | . 83  | 1.14       |
|                 | 20633                                  | MMER                 | 1        | £4.5             | 01.0      | • 4t  | .74        |
|                 | 20b32                                  |                      | 1        | <u> </u>         |           |       | A • • *    |
|                 | <b>∠</b> 0631                          | nafn                 | . 1      | tu.7             | 91.2      | . ε 3 | 1.14       |
|                 | 20630                                  | MEN                  | 1        | 70.4             | 74.4      | • 15  | • 25       |
|                 |                                        | MMEA                 |          |                  | bt.a7_    | 4     | <b></b>    |
|                 | 23620                                  | MMFr                 | 1        | 67.1             | 41.1      | . 64  | 4061       |
|                 | 20027                                  | MMFN                 | 1        | 6.40             | 4c . C    | • 4 ] | 1.47       |
|                 | Zubet                                  | nmeu                 |          | فولاغ            | ¥_a_=_    | ¥i    |            |
| •               | 20625                                  | MMFN                 | 1        | 64.1             | 91.7      | . 24  | 1.27       |
|                 | 20624                                  | MMEN                 | 1        | 00.0             | 41.5      | .76   | 4023       |
|                 | 20623                                  | MMFN                 |          | <u></u>          |           |       |            |
|                 | 26622                                  | mren                 | 1        | 64.3             | 66.0      | • 6 3 | .57        |
|                 | 20621                                  | MMFN                 | 1        | 64.3             | 46.6      | . 41  | 4.47       |
|                 | 20620                                  | MEEN                 |          | <u></u>          |           |       | 7y         |
|                 | 26619                                  | mmFn                 | i        | c/.1             | 01.0      | . 67  | . 95       |
|                 | 20618                                  | MMFN                 | 1        | 44.0             | 40.4      | 1063  | 1.01       |
|                 | ــــــــــــــــــــــــــــــــــــــ | MFF.S                |          | د م د لا         | Y/        |       | 6443       |
|                 | 21010                                  | nnfn                 | <b>⊥</b> | 54. <del>1</del> | 40.3      | . 6 5 | 1004       |

### MERSUNNEL NUISE EXPOSURE AND INFACT

THRESHULD LEVEL = 80.0 DEA 8-HK PERMISSIBLE LEVEL = 90.0 DEA FRIHANGE ROTE = 5 DEA

| GRADE        |                      |          |               |               |           |              |
|--------------|----------------------|----------|---------------|---------------|-----------|--------------|
| <br>CODE     | GRADE<br>DESCRIPTION | NU. GF   |               | LEVLL         |           | NU152 0051   |
| 20615        | MHFN                 | 1        | 90.7          | 92.0          | 1.11      | ۷٠٤٤         |
| <br>_26614   | mmfa                 |          | دهنه          |               | قدم       | GL           |
| 20613        | MMFN                 | 1        | <b>i.l.4</b>  | 64.5          | 0 د •     | •44          |
| 20612        | MMFN                 | 1        | 00.0          | 41.0          | .70       | 1 . 6 3      |
| <br>20611    |                      |          |               |               | -         | 7            |
| 20010        | MMFN                 | 1        | 14.3          | C             | • 2 3     | • 31         |
| 20669        | MMFG                 | 1        | U4 + L        | Ec. 7         | • 4 4     | • <b>€</b> 3 |
| <br>_ < 1000 | nntN                 |          |               | - blat        | 45        |              |
| 20607        | MMFN                 | 1        | 10.0          | 51.5          | . 17      | . 1          |
| 20606        | MMEN                 | 1        | 16.3          | 7u            | • L 7     | • 45         |
| <br>26665    | nefa                 | 1        | 66.1          |               |           | د ≎ •        |
| 20064        | aren                 | 1        | U = 0 Å       | <b>3 € €</b>  | ڌ د •     | •41          |
| 21013        | MMER                 | 1        | U4 + 1        | 50 • 1        | - 44      | • 22         |
| <br>LLLIL    |                      |          |               | <u></u>       |           |              |
| 26601        | MMEN                 | 1        | 70.0          | 43.3          | 1.11      | よっちゃ         |
| 20600        | MMFN                 | 1        | 40.8          | 43.3          | 1.11      | 36.4         |
| <br>20352    | ME3.                 |          | ccai_         |               | درمـــــ. | • 47         |
| 20551        | nn3                  | 1        | とう。ひ          | د . د د       | • 56      | . 14         |
| 20550        | Mm3                  | 1        | <b>59 € 1</b> | 41.7          | • 64      | 7            |
| <br>         | hr:i                 | 1        | Laki          | Y_a Z         |           | 1.27         |
| 20546        | MM3                  | 1        | C4.1          | 36 · 7        | . 44      | • t: 3       |
| 20547        | nH3                  | 1        | 70.7          | 43.4          | 1.00      | 1.76         |
| <br>_40540_  |                      |          |               | E.y.a.y       |           | تلامد        |
| 20545        | mm3                  | 1        | 74.1          | 02.7          | • ८ દે    | •32          |
| 20544        | MM3                  | 1        | ヒメ・リ          | 54.5          | . 67      | 1.41         |
| <br>_20543   | nn3                  |          | <u>04_</u>    |               |           |              |
| 20542        | nn3                  | 1        | <b>ხ</b> 6. 7 | 4106          | . 63      | 1.14         |
| 20541        | hmis                 | 1        | 07.6          | 23 . L        | .12       | .77          |
| <br>20540    |                      |          | . بدمهم       | كمندو         |           | La67         |
| 20539        | nn3                  | 1        | 66.7          | 41.4          | 7 د ٠     | 1.666        |
| 20538        | nr3                  | 1        | 64.1          | 44.7          | ٧٥ .      | 1.67         |
| <br>20537    | AM3                  | 1        | 1.43          | - 7 - 1 - 7 - | - 23      |              |
| 20536        | миз                  | 1        | £7.7          | 71.1          | .72       | 1.17         |
| 26535        | nm3                  | 1        | <b>ti.4</b>   | 64.4          | با کی ہ   | • 44         |
| <br>20534    |                      |          |               | مناكسي        | 1Ł        | . aali       |
| 20533        | r.m3                 | <b>≟</b> | しつ・む          | 61.0          | . 54      | • € ⊖        |

### MERSUNNEL NULSE EXPOSERE AND APPAUL

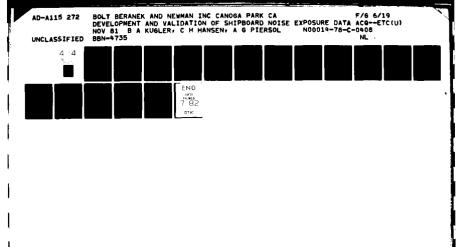
THRESHULD LEVEL - = 80.0 UOA 6-MR PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE KATE

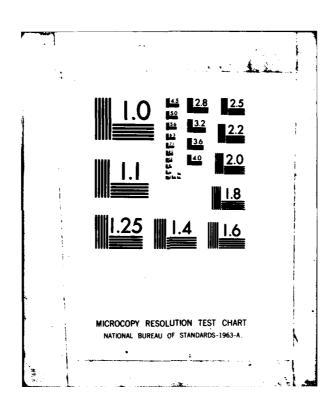
|                                       | _             |                      | ALL SHIPS   |             |              |                                          |                                    |
|---------------------------------------|---------------|----------------------|-------------|-------------|--------------|------------------------------------------|------------------------------------|
|                                       | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF      |             | Levil        |                                          | Nulsa uts.                         |
|                                       | 20532         | nra                  | 1           | دن و د      | 25.6         | • > 4                                    | • 45                               |
|                                       |               | M = 3                | 1           |             |              | ٧٤٠                                      | 4061                               |
|                                       | 20530         | P.P. 3               | 1           | 00.4        |              | - ti i                                   | • 75                               |
|                                       | 20529         | na a                 | ī           | 66.4        | 9.40         | .61                                      | .90                                |
|                                       | <u>2u5ab</u>  |                      |             |             | 91.7         |                                          | 1.27                               |
|                                       | 20527         | mm3                  | 1           | 02.5        | بان <u>ن</u> | • 53                                     | .50                                |
|                                       | 20526         | Port 3               | ī           | 57.5        | 90.00        | . 74                                     | 4.05                               |
|                                       | <u>-</u>      |                      |             |             |              | 7                                        |                                    |
|                                       | 20524         | LMM.                 |             | 45.3        | 101.1        | 2.09                                     | 4.67                               |
| i                                     | 20523         | ត្តាម                | 1           | 66.1        | 09.0         | . c7                                     | .45                                |
|                                       | 20522         |                      |             |             | 44.45        | 40                                       | .74                                |
|                                       | 20521         | rini 3               | 1           | 71.03       | د . د ۲      | 1.19                                     | 2.51                               |
| ?                                     | 20526         | Mr. 3                | 1           | 9606        | 77.6         | د د ۱۰                                   | 1016                               |
| i                                     | 20519         | Edn                  |             | المديد      | 41           | نالاحل                                   |                                    |
|                                       | 20518         | nmä                  | 1           | 4302        | 42.7         | 1.55                                     | L . C L                            |
| 7                                     | 20517         | nris                 | i           | 40.5        | 43.4         | 1.00                                     | 14                                 |
| }                                     | 20510         |                      |             |             | 9_6_         |                                          |                                    |
| •                                     | 20515         | mm3                  | 1           | 01.4        | 64.7         | ۰ د ۰                                    | .44                                |
|                                       | 26514         | nm3                  | 1           | SC - 4      | 67.7         | · Oi                                     | •46                                |
|                                       | 20513         | nr3                  |             |             | <u> </u>     | ناء ــــــــــــــــــــــــــــــــــــ | دا مدسست                           |
|                                       | 20512         | mm3                  | 1           | 66.U        | 41.5         | .16                                      | فهمد                               |
|                                       | 20511         | MM3                  | 1           | 63.0        | さしゅち         | ع د ۰                                    | -64                                |
| · · · · · · · · · · · · · · · · · · · | ZU510         | Enn                  |             | & 00 4      | كملاكل       |                                          | 445                                |
|                                       | 20569         | nm 3                 | 1           | 63.0        | 02.5         | • 3 0                                    | • t i                              |
|                                       | 20508         | rm3                  | 1           | £ = 0       | 71.00        | .10                                      | 4.62                               |
| ·                                     | 20507         |                      |             |             | <del></del>  |                                          | الألحامة سننس                      |
|                                       | 20506         | mm3                  | 1           | <b>61.4</b> | 54.4         | 0د .                                     | • 47                               |
|                                       | 20505         | nm3                  | 1           | <b>00.4</b> | 67.7         | .61                                      | • 40                               |
|                                       | <u> </u>      |                      | 1           |             |              |                                          | 474                                |
|                                       | としかじ さ        | nrs                  | <u>i</u>    | 5 A . Ú     | 04 - 4       | .24                                      | • 4 5                              |
|                                       | 20502         | hns                  | ì           | 67.5        | 4004         | .12                                      | 1.03                               |
|                                       | 20501         |                      |             | - Zyad      |              |                                          | الدمــــــــــــــــــــــــــــــ |
|                                       | 20560         | nr-3                 | 1           | 72.1        | 44.6         | 1.33                                     | 1.46                               |
|                                       | 20425         | nnd                  | 1           | 63.0        | 65 • 7       | •41                                      | • >>                               |
|                                       | 2u424         | BP-2                 | <del></del> | . ومنتف     |              |                                          |                                    |
| , -                                   | 26423         | nmż                  | 1           | 74          | 44.00        | 1.しち                                     | 4064                               |

### PERSUNNEL NUISE EXPUSIONE AND IMPAUT

THRESHULD LEVEL = 00.0 DLA 8-HR PERMISSIBLE LEVEL = 90.0 DDA EXCHANGE RATE = 5 DER

| GRADE          | GD 4 DE              | ALL SHIPS    |                           |           |              |                  |
|----------------|----------------------|--------------|---------------------------|-----------|--------------|------------------|
| CODE           | GRADE<br>DESCRIPTION | NU. UF       |                           | LcVtL<br> |              | Nuise buse       |
| 26422          | nnz                  | 1            | 46.7                      | 95.1      | 1.40         | `.<br><b></b> .  |
|                | nn2                  | <del>1</del> | 20.4                      | و محب     |              |                  |
| 20420          | nn2                  | 1            | 03.5                      | 86.4      | • 53         | • ୯୦             |
| 20419          | mm2                  | 1            | 71.4                      | 74.4      | • 68         | •12              |
|                |                      |              | <del>              </del> | <u> </u>  | ٧٥           | 4467             |
| 26417          | hm2                  | i            | € 5 € 4                   | 64.4      | .61          | • 40             |
| 20416          | nn2                  | 1            | ~ Y • 1                   | 71.1      | • 6 6        | 2.67             |
|                |                      |              | لا معتف                   | ¥4        | 99           | المائية والمائية |
| 20414          | hnz                  | 1            | 46.1                      | 44.6      | 1.23         | 1.90             |
| 20413          | Mhz                  | 1            | CU . 4                    | 67.6      | .61          | • 67             |
| 26414          | <b></b>              |              |                           | 2= 4      | 1            | • 90             |
| 20411          | 6. C Z               | i.           | <b>-5-1</b>               | 42.7      | • 6 7        | 1.27             |
| 20410          | ME                   | 1            | 73.6                      | 44.6      | 1.27         | 2 5 € د          |
|                |                      | <b></b>      |                           | £4.64     |              | 4 4 7            |
| 20 <b>40</b> 8 | nn2                  | 1            | 43.2                      | 45.7      | 1.55         | 2.44             |
| 26467          | MMZ                  | 1            | 00.4                      | 64.4      | .ci          | •40              |
|                |                      |              | . دمغه.                   | خامستان   |              | • 53             |
| 20405          | nni                  | 1            | 01.3                      | 40.7      | • <b>¢</b> ઙ | 1.17             |
| 26404          | MMZ                  | <u> 1</u>    | 14.5                      | 64.6      | . 2 3        | 7د .             |
|                | nn2                  |              | 1111                      | _ ندم فنف |              | - 495            |
| 20402          | MH2                  | 1            | c 4 • 1                   | Bt 7      | . 44         | • t s            |
| 20461          | n#2                  | 1            | 62.1                      | 0.00      | د د .        | .47              |
| 2444           |                      |              | 0401                      | 46.1      | 44           | 463              |
| 20309          | hm i                 | 1            | 90.0                      | 4c ati    | 1.00         | 4.46             |
| 20368          | MMI                  | 1            |                           | 83.1      | . 54         | .11              |
| 7 كاف الشيار   | hrl                  |              | ــ ط ماناغــــ            |           | د عمد سا     | 49               |
| 20306          | MML                  | 1            | 43.7                      | 94.4      | 1.66         | 1.35             |
| 20305          | nnl                  | 1            | £4.2                      | 9000      | •90          | 1.04             |
| 20304          | RA1                  |              | لا مهاد                   | 94 . 4    | 1014         | . 1.54           |
| 20303          | tim 1                | 1            | 05.5                      | 60.4      | •53          | •6t              |
| 26362          | nnl                  | ī            | 65.4                      | 64.4      | 1            | •96              |
| 2C301          |                      |              | 4                         |           | 1.11         |                  |
| 20100          | nm1                  | 1            | 64.1                      | 91.7      | . 04         | 7                |
| 20204          | MMC                  | ī            | دودن                      | 0         | • 60         | •20              |
| 46443          | hrc                  |              | ومذو                      | 79.27     | 1000         | 1.97             |
| 20262          | rint                 | 1            | C201                      | 51        | • \$ 0       | • 6.6            |


M-6


The second secon

### PERSUNNER NULSE EXPLOSERE AND IMPACT

THRESHULD LE VEL = dual JUA 8-MK PERMISSIBLE LEVEL = 40.0 DOA 

|          | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. GF   | 50UND LE                                 |              |              | Nolaz puac |
|----------|---------------|----------------------|----------|------------------------------------------|--------------|--------------|------------|
|          |               |                      |          |                                          |              |              |            |
|          | 20201         | MMC                  | 1        | C701 4                                   |              | • 0 :        | 4.35       |
|          | ـــ بلناغتان  | nnl                  |          | <del></del>                              | <del>4</del> | 47           |            |
|          | 10961         | Тa                   | ì        | 67.4 4                                   | 2.4          | . (0         | 4.40       |
|          | 10900         | Ισ                   | <u>k</u> | c1.4 4                                   | 6.4          | .76          | 1.46       |
|          | 16864         |                      |          |                                          |              |              | 4.01       |
|          | 10803         | ETFr.                | 1        | 4-44 4                                   | 7.4          | 1.44         |            |
|          | 11012         | LTF <sub>t</sub> .   | 1        | 92.4 9                                   | 1.4          | 1.45         | £ • 5 1    |
|          | 10561         | bIfk                 |          |                                          | 1.4          |              | • • •      |
|          | 16560         | bTFk                 | 1        | C4.5 6                                   | 1.5          | .47          | . 44       |
|          | 16716         | cita                 | 1        | Yeal Y                                   | 1.1          | 1.34         | £ + 64     |
|          | 10717         |                      |          | 61.4 4                                   | - +4         | . 16         | 1 - 4:     |
|          | 10716         | uTFn                 | ì        | CD • 1 7                                 | 4 - 1        | • 26         | 1.1        |
|          | 10715         | 2112                 | 1        | C7.5 Y                                   | 4.5          | • 93         | 1          |
|          |               | IFA                  |          | فسنست فالمعانية                          | 4.5          | دلا مـــــــ | 1001       |
| 1        | 10713         | bTFA                 | 1        | £ 6.03 4                                 | نا و د       | • 6 4        | 1.54       |
|          | 10712         | ETFA                 | l        | 72.4 4                                   | 7.4          | 1.40         | ١٥٠١       |
| •        | 107.11        | LIFA                 | 1        | ــــد عمــــــــــــــــــــــــــــــــ | . ـ باماد    | 444          | 4.44       |
| <b>5</b> | 10710         | ETFA                 | 1        | tc.5 4                                   | ناهد         | • 56         | 4.04       |
|          | 10769         | LTFA                 | 1        | 90.4 9                                   | 5.4          | 1.05         | 11         |
| •        | 14744         |                      |          |                                          | ۔ دمد        | 47           | . 74       |
|          | 16707         | BTFA                 | 1        | 43.1 4                                   | 0.2          | 4.55         | 3010       |
|          | 10706         | BTFA                 | ì        | 96.4 Y                                   | 7.4          | i • 40       | 4.61       |
|          | 16765         | ulta                 |          | ٧ 4 مئٹ ا                                | u . 4        |              | 4.665      |
|          | 10764         | ьтга                 | i        | 64.4 Y                                   | - • J        | و پ          | 4.44       |
|          | 10703         | ETFA                 | 1        | 07.4 4                                   | 4 . 4        | . 10         | 1.46       |
|          | 10702         | <u>bīfa</u>          |          |                                          | خمد          | عام د.       | -14        |
| •        | 10761         | BTFA                 | 1        | 11.1 c                                   | 7            | .17          | . 30       |
|          | 10760         | STFA                 | 1        | 42.4 4                                   | 1.4          | 1.4L         | 4.624      |
|          | 10651         | <u> </u>             |          | هـــه مغنــه                             | 1.4          | ود م         | ./.        |
| ,        | 1650          | eten                 | 1        | 67.4 Y                                   | 4            | ./C          | 1.46       |
|          | 10649         | LTFN                 | 1        | 60.8 V                                   | 1 • c        | . 04         | 4064       |
|          | 10648         | tlfn                 |          | لالاما                                   | 1. Lar       | تبلام        | 4001       |
|          | 10647         | ETFN                 | 1        | 14.5                                     | 4.5          | 3            | .41        |
|          | 16640         | ETFN                 | 1        | 4-04 4                                   | 1.4          | 1.4          |            |
|          | LU45          | TFM                  |          | و باملاندان                              | 4 . 1        |              | A • 1.     |
|          | 10644         | LTfn                 | i        | 10 at 1                                  | J . (        | • t c        |            |
| •        |               |                      |          |                                          |              |              |            |





### PERSUNNEL NUISE EXPUSERE AND INFACT

THRESHULD LEVEL = 00.0 DER 6-HR PERMISSIBLE LEVEL = 90.0 DER EXEMANGE RATE = 5 DER

# ALL SHIPS

|          |               |                      | 0        |         |             |                                            |              |
|----------|---------------|----------------------|----------|---------|-------------|--------------------------------------------|--------------|
|          | GRADE<br>CODE | GRADE<br>DESCRIPTION | NU. UF   |         | <u> </u>    |                                            | Muise bus.   |
|          |               |                      |          |         |             |                                            |              |
|          | 10643         | DTFN                 | 1        | 20.4    | 96.49       | . 01                                       | 4.14         |
|          | 16042         | ETEN                 |          |         |             |                                            |              |
|          | 10641         | ETFN                 | 1        | 01.7    | 46.7        |                                            | 1.46         |
|          | 10640         | ETFN                 | ĩ        | 0.63    | 94.1        | • c b                                      | 1.75         |
|          | 16639         | nie                  |          | _41.4   |             |                                            |              |
|          | 10638         | ETFN                 | <u>.</u> | 65.0    | ¥3.6        |                                            | 1.04         |
|          | 10637         | ŁTFN                 |          | 94.3    | 44.3        | 1.61                                       | 2063         |
| <u>-</u> | 1626          | LIEN                 |          |         |             |                                            |              |
|          | 16635         | LTFN                 | Ī        | 94.0    | 44.1        | 1.75                                       | 3.51         |
|          | 10634         | ETFN                 | ī        | 41.0    | 42.3        | 1.16                                       | 2.09         |
|          | . د څه لال    | LIFA                 |          | 44.7    |             | 1.40                                       | 16           |
|          | 11652         | citi                 | ī        | زووو    | 48.0        | 1.52                                       | 04 د د       |
|          | lutsi         | cTfm                 | À        | ں و ز و | 90 a 3      | 1.04                                       | 3.4          |
|          |               | z I f A              |          |         | <u> </u>    |                                            | 1.£4         |
|          | 10629         | bTfn                 | <u>_</u> | 62.4    | 90.4        | .53                                        | 1.05         |
|          | 10026         | DTFN                 | ī        | 70.7    | 75 o d      | 1.41                                       | ٤٠٤٤         |
|          | 11:627        | IF#                  | i        |         |             |                                            |              |
|          | 10020         | oTti.                | 1        | 64.5    | cc . 7      | . 49                                       |              |
|          | 10625         | bTfn                 | ī        | 92.4    | 41.4        | 1.40                                       | 4.51         |
|          | 10624         | NTEN                 | i        |         |             | نا 4 ملـــــــــــــــــــــــــــــــــــ |              |
|          | 10623         | FIFN                 | 1        | 72.4    | 41.4        | 1.4:                                       |              |
|          | 10622         | oTFN                 | _<br>_   | 42.4    | 71.4        | 1.46                                       | 2.61<br>2.61 |
|          | 10621         | ŁIŁA                 | i        | _44.4_  |             |                                            |              |
|          | 10620         | ETFN                 | 1        | 76.4    | 71.4        | 1.46                                       | 2.51         |
|          | 10619         | bTfii                | ī        | 41.0    | ذه دلا      | 1.10                                       | 2.04         |
|          | _10618        | LIFA                 | ī        | _4aal_  |             |                                            |              |
|          | 10617         | OTFN                 | 1        | 04.5    | 07.5        | .47                                        | .44          |
|          | 10016         | DTFN                 | ī        | 67.4    | 46.4        | .70                                        | 1.40         |
|          | 10615         | ETEN                 |          |         | 46.4        |                                            |              |
|          | 10614         | bTFN                 | 1        | 14.5    | 74.5        | • 12                                       | <b>1.40</b>  |
|          | 10613         | bTrn                 | ī        | 9604    | 91.4        | 1.40                                       | د . د ا      |
|          | 10017         | TFN                  | Ī        | 0.63    | <u> </u>    |                                            |              |
|          | 10611         | oTfh                 | 1        | 60 a 4  | 67.7        |                                            |              |
|          | 10610         | ETFN                 | i        | 67.5    | 94.3        | . 43                                       | 1.01         |
|          | 70003         | IEA                  | î        |         | ¥6<br>¥6    |                                            |              |
| - •      | 16666         | blen                 | 1        | 15.4    | <del></del> |                                            |              |
|          |               |                      | •        | 4 7 6 7 |             | • 4 3                                      | .10          |

\_M-8

A CHARLES AND A

| Report 4735 | Bolt Beranek ar | d Newman, | Inc. |
|-------------|-----------------|-----------|------|
|             |                 |           | -    |

# PENSUNNEL NUISE EXPUSING AND IMPAUT

THRESHOLD LEVEL = 80.0 DEA 8-HR PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

|             |               |                                                 | ALL SHIP |            |                 |         |           |
|-------------|---------------|-------------------------------------------------|----------|------------|-----------------|---------|-----------|
|             | GRADE<br>CODE | GRADE<br>DESCRIPTION                            | NU. GF   |            | LeVcL<br>       |         | Nalse Lus |
|             | _             |                                                 |          |            |                 | ELL ATT | . hele    |
|             | 10667         | bTFI                                            | 1        | 67.4       | 94 • 4          | . 70    | 1.40      |
|             | 10060         | tTFn                                            | i        | tc.4_      |                 | .دد     |           |
|             | 10605         | eTfn                                            | ı        | 50.5       | 4.00            | •04     | 1.04      |
|             | 10604         | OTEN                                            | ī        | 89.0       | 94.1            | 30.     | 1.72      |
|             | 10063         | NTFN                                            | i        |            |                 |         | 1.04      |
|             | 10662         | DTFN                                            | 1        | 67.4       | 46.4            | .70     | 1.40      |
|             | 10601         | ETFN                                            | ī        | 92.4       | 91.4            | 1.40    | 2.01      |
|             | _LLECL        | tItn                                            |          |            | _ <u>44.5</u> _ |         |           |
|             | 10544         | ĿΤσ                                             | 1        | 67.4       | 46.4            | .70     | 4.40      |
|             | 10543         | t Tu                                            | ī        | 43.4       | 90.4            | 1.00    | 3.19      |
|             | 16542         |                                                 | 1        | . 1100     |                 | 463     | -7/       |
|             | 10541         | c13                                             | 1        | 94.9       | 100.0           | 1.75    | סאָּ נ    |
|             | 10540         | ŁΤن                                             |          | 04.5       | 27.5            | .47     | . 74      |
|             | 10539         |                                                 |          |            | ىكىتىلا         |         |           |
|             | 10538         | 613                                             | 1        | 66.00      | 71.0            | . 64    | 1.29      |
|             | 10537         | LT3                                             | 1        | 91.1       | 70.1            | 1.17    | 2034      |
|             | 10536         |                                                 |          | _ ځودې_    | 44.5            | . L.Y.A |           |
|             | 10535         | E T a                                           | i        | 90.7       | 45.0            | 1.11    | £ • 6 6   |
|             | 10534         | bT3                                             | 1        | 40.2       | 47.1            | 1.02    | 1.91      |
|             | 10533         | EI3                                             |          | _ <u> </u> | 45.0            |         |           |
|             | 10532         | ETa                                             | · 1      | 60.5       | 93.0            | . 62    | 1.04      |
|             | 10531         | 6T3                                             | 1        | 46.4       | 97.4            | 1.40    | 4.61      |
|             | 16530         | t]3                                             |          | 87.4       | 94.4            |         | 40        |
|             | 10529         | εTa                                             | 1        | 42.4       | 97.4            | 1.46    | 61        |
|             | 10528         | ETS                                             | 1        | 46.4       | 97.4            | 1.46    | 4001      |
|             | 10527         | _5]3                                            |          |            | فمونو           |         |           |
|             | 10526         | ET3                                             | 1        | 69.5       | 94.5            | • 43    | 1007      |
|             | 16525         | <b>5T</b> 3                                     | ı        | 57.4       | 46.4            | .70     | 1.40      |
|             | 10524         | <b>LT3</b>                                      |          | - 6463     | blos.           |         |           |
|             | 16523         | E <b>T</b> a                                    | 1        | 67.4       | 46.4            | .70     | 4.40      |
|             | 10522         | £ <b>1</b> 3                                    | 1        | 91.6       | 40.7            | 1.65    | 4.51      |
|             | 11521         | <u> FI3                                    </u> |          |            | 0/04            | ددم     | 74        |
|             | 10520         | £13                                             | 1        | 90.4       | 45.4            | 1.15    | 2011      |
|             | 10519         | <b>6</b> T3                                     | 1        | 64.5       | 44.5            | . 53    | 1007      |
| <del></del> | 16518         | <u></u>                                         |          | دمدید_     | <br>3           |         |           |
|             | 11517         | ĿΤċ                                             | 1        | 00.5       | 45.6            | • 6 4   | 4.54      |

### PERSUNNEL NUISE EXPUSERE AND IMPACT

THRESHULD LEVEL = 80.0 DEA 8-HA PERMISSIBLE LEVEL = 90.0 DEA EXCHANGE RATE = 5 DEA

| ,<br>GRADE     |                      | ALL SHIPS   |                 |                 |                                          |                |
|----------------|----------------------|-------------|-----------------|-----------------|------------------------------------------|----------------|
| CODE           | GRADE<br>DESCRIPTION | NU. UF      |                 | LtVci<br>—Hobo— |                                          | Nulst büs.     |
| 10516          | oT3                  | 1           | 69.9            | 45.0            | . 79                                     |                |
| 10515          | <u> </u>             |             | <del></del>     | <del></del>     | ¥3                                       |                |
| 10514          | 513                  | 1           | £1.7            | 46.7            | .73                                      | 1.40           |
| 10513<br>10512 | <b>6</b> T 3         | 1           | 90.4            | 95.4            | 1.05                                     | e•i1           |
| 10511          | <del>513</del>       |             |                 | <del></del>     | us                                       |                |
| 10511          | 513<br>513           | 1           | c7.7            | 92.7            | .73                                      | 1.45           |
| 10510          |                      | 1           | 07.5            | 94.5            | • 43                                     | 1.07           |
|                | <u></u>              | <del></del> | <del></del>     | بدهـ الإ        |                                          | 4.47           |
| 10508          |                      | 1           | 43.4            | 92.4            | 1.05                                     | 11             |
| 10507          | 613                  | 1           | 69.5            | 91.3            | • 45                                     | 1.14           |
|                |                      |             | - 43 e 5        | - 54.5          | • 6 3                                    | -47            |
| 16505          | LTS                  | 1           | 76.4            | 77.5            | 1.41                                     | <b>≜</b> ● Ö : |
| 10504          | (13<br>              | <u> </u>    | 93.4            | 4:00            | 1.0                                      | 6.664          |
| 10503          |                      |             | _ <del></del>   | <del></del>     | inel                                     | La44           |
| 10502          | 6T3                  | 1           | 80.1            | 91.1            | •56                                      | 1.17           |
| 10501          | b13                  | 1           | 42.4            | 47.4            | 1.46                                     | 01             |
| 10500          |                      |             | ا زملاعت        | 44              |                                          | 1.07           |
| 10423          | bT2                  | 1           | 6000            | 44 · i          | • 6 6                                    | 1.75           |
| 10422          | BT2                  | 1           | 41.5            | 42.0            | 1.23                                     | 1.76           |
| 16421          | <u>-612</u>          | <del></del> | _ <u> </u>      | ¥4a1            | ع د مـــــــــــــــــــــــــــــــــــ | 4442           |
| 10420          | <b>6</b> 12          | 1           | 00.5            | 93.0            | • ¢Ż                                     | 1.04           |
| 10419          | £T2                  | 1           | ひょう             | 44.5            | . 43                                     | 1.07           |
| 10418          | <u></u>              | <del></del> | <del>00.b</del> | Y & &           |                                          | ¥•4Y           |
| 10417          | εΤε                  | 1           | 60.5            | 43.6            | • 02                                     | 4.664          |
| 10416          | £ <b>T</b> Z         | 1           | 91.0            | 40 . 0          | 1.20                                     | 2.57           |
| 10415          | <u></u>              |             | <u> </u>        | 44.64           |                                          |                |
| 10414          | 8T2                  | 1           | 44.0            | 99.1            | 1.75                                     | 3.71           |
| 10413          | 612                  | 1           | 65.4            | 91.4            | • > 3                                    | 4.65           |
| 10412          | _ <u>t_12</u>        | <del></del> |                 |                 | 47                                       |                |
| 16411          | ETZ                  | 1           | 46.4            | 41.4            | 1.40                                     | 51             |
| 10410          | bTż                  | 1           | 46.6            | 41.1            | よ・シン                                     | 2.07           |
| 1C409          | _ <u>+I</u> {        |             | <u> </u>        | Pattur          |                                          | 4061           |
| 104C6          | e <u>t</u> 2         | 1           | 74.5            | 64.5            | .23                                      | .47            |
| 10407          | ETC                  | 1           | 46.4            | 91.4            | 1.46                                     | £ • 6 £        |
|                | <b>LI</b> 2          |             | 4744            | ¥ 4             | 16                                       | . 4.40         |
| 10465          | bT2                  | ì           | 74.4            | 71.4            | 4.46                                     | 2.51           |

M-10

| 10404   BT2   1   67.9   95.0   899   16403   872   1   87.4   97.4   97.4   97.4   97.4   97.4   1.40   10401   BT2   1   87.5   94.5   97.5   97.5   10406   BT2   1   87.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5   97.5     | LEVEL = 80.0 DOA  SSIBLE LEVEL = 90.0 DOA  ALL SHIPS    No. OF Sound Level Daily Noise Do   Peaso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>     | lt Bera                                                    | nek and                                           | Newman                                 | , Inc.         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------|----------------|
| THRESHULD LEVEL = 80.1 DOA 8-HR PERHISSIBLE LEVEL = 90.0 DOA ENCHANGE RATE  ALL SHIPS  GRADE CODE DESCRIPTION NO. OF DOUND LEVEL DAILY NOISE PERSON NO. OF SUUND LEVEL DAILY NOISE PERSON NO. OF SUUND LEVEL DAILY NOISE 10404 BT2 1 c7.4 92.4 FLAN 8  10402 BT2 1 72.4 97.4 1.40 10401 BT2 1 69.5 94.5 .93 10406 BT2 1 09.5 94.5 .93 10510 BT1 1 09.5 94.5 .93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEVEL = 80.0 DOA  SSIBLE LEVEL = 90.0 DOA  ALL SHIPS    No. OF Sound Level Daily Noise Do   PEASO   PEAN   PO.0   PEAN   PO.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            | ·- ·- ·                                           |                                        |                |
| THRESHULD LEVEL = 80.1 DOA 8-HR PERHISSIBLE LEVEL = 90.0 DOA ENCHANGE RATE  ALL SHIPS  GRADE CODE DESCRIPTION NO. OF DOUND LEVEL DAILY NOISE PERSON NO. OF SUUND LEVEL DAILY NOISE PERSON NO. OF SUUND LEVEL DAILY NOISE 10404 BT2 1 c7.4 92.4 FLAN 8  10402 BT2 1 72.4 97.4 1.40 10401 BT2 1 69.5 94.5 .93 10406 BT2 1 09.5 94.5 .93 10510 BT1 1 09.5 94.5 .93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEVEL = 80.0 DOA  SSIBLE LEVEL = 90.0 DDA  AIL SHIPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
| ### PERMISSIBLE LEVEL = 90.0 00A  ENUMANCE RATE = 5 00  ALL SHIPS  GRADE  GRADE  DESCRIPTION  10404 BT2  1 03.9 95.0 .99  10403 BT2  1 27.4 97.4 1.40  10401 BT2  1 29.5 94.5 .93  10406 BT2  1 09.5 94.5 .93  10406 BT2  1 09.5 94.5 .93  10510 BT1  1 09.5 94.5 .93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALL SHIPS  No. 00 Sound Level Daily Noise De Person No. 00 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERSUNNEL NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISE EXPUSU  | KE ANL                                                     | Inract                                            | •                                      |                |
| ### ALL SHIPS    GRADE   GRADE   DESCRIPTION   No. Of Sound Level Daily Noise   Pease Stand Stan | ALL SHIPS  No. Of Sound Level Daily Noise Deplement of the North Role Bean Role  1 69.9 95.0 .99 1.67  1 72.4 97.4 1.40 2.61  1 69.5 94.5 .93 1.67  1 09.5 94.5 .93 1.67  1 09.5 94.5 .93 1.67  1 09.5 95.6 .62 1.64  1 90.8 95.3 1.11 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
| GRADE CODE DESCRIPTION NO. OF SOUND LEVEL DAILY NUISO PERSON NEWN NO. OF SOUND LEVEL DAILY NUISO PERSON NEWN NO. OF SOUND LEVEL DAILY NUISO PERSON NEWN NO. OF SOUND LEVEL DAILY NUISO PERSON NO. OF SOUND LEVEL DAILY NUISO P | Nu. OF SUUND LEVEL DAILY NUISE DE PERSONNEAN NOTO 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EACHANGE RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·IŁ         |                                                            | <del>                                      </del> |                                        |                |
| CODE   DESCRIPTION   Nu. Of SOUND LEVEL DAILY NOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 c9.9 95.6 .99 1.67  1 c9.9 95.6 .99 1.67  1 c7.4 96.4 .70 1.60  1 c7.4 96.5 .93 1.67  1 c7.4 96.5 .93 1.67  1 c9.5 94.5 .93 1.67  1 c0.5 95.6 .66 1.64  1 v0.8 95.3 1.11 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALL SHIPS   |                                                            |                                                   |                                        |                |
| 10404 6T2 1 67.9 95.0 .99  10403 6T2 1 67.4 92.4 .70  10402 6T2 1 72.4 97.4 1.40  10401 6T2 1 69.5 94.5 .93  10406 6T2 1 67.4 92.4 .70  10310 6T1 1 69.5 94.5 .93  10510 6T1 1 60.5 95.6 .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 69.9 95.0 .99 1.97  1 72.4 92.4 .70 1.40  1 72.4 94.5 .93 1.07  1 69.5 94.5 .93 1.07  1 09.5 94.5 .93 1.07  1 09.5 94.5 .53 1.07  1 09.5 95.0 .62 1.04  1 09.5 95.0 .62 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | ORAL GRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE<br>PTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                            |                                                   |                                        |                |
| 16463 872 1 27.4 42.4 77.4 1.46 16462 872 1 72.4 77.4 1.46 16461 872 1 87.5 74.5 .73 16466 872 1 87.4 72.4 .76 16310 871 1 87.5 74.5 .73 16310 871 1 80.5 75.6 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 72.4 74.4 1.40 2.61 1 72.4 74.4 1.40 2.61 1 67.5 74.5 .93 1.67 1 67.4 72.4 .70 2.40 1 07.5 74.5 .53 1.67 1 00.5 75.6 .62 1.64 1 70.8 70.5 1.11 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            | <del></del>                                       | <u>E.E</u> A.B                         | - <b>R</b> -U- |
| 10402 bT2 1 92.4 97.4 1.40 10401 bT2 1 69.5 94.5 .93 10400 bT2 1 67.4 92.4 .70 10310 bT1 1 69.5 94.5 .93 10510 bT1 1 60.5 93.6 .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 92.4 97.4 1.40 2.61 1 69.5 94.5 .93 1.67 1 67.4 92.4 .70 .4.40 1 09.5 94.5 .93 1.67 1 00.5 93.6 .62 1.04 1 90.8 90.3 1.11 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                      | –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            | -                                                 |                                        |                |
| 10401 bT2 1 89.5 94.5 .93 .10400 bT2 1 87.4 92.4 .70 10311 bT1 1 09.5 94.5 .93 10310 bT1 1 00.5 93.6 .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 69.5 94.5 .93 1.67 1 67.4 92.4 .70 .646 1 09.5 94.5 .93 1.67 1 00.5 93.6 .62 1.04 1 90.8 90.5 1.11 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                      | . —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
| 1040C     672     1     67.4     92.4     30       10311     671     1     69.5     94.5     .93       10310     671     1     60.5     93.6     .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 09.5 94.5 .53 1.004<br>1 09.5 94.5 .53 1.004<br>1 00.5 93.6 .62 1.004<br>1 90.8 90.5 1.11 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
| 10510 BT1 1 00.5 95.6 .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 00.5 95.6 .62 1.04<br>1 92.6 92.6 1.11 2.05<br>1 90.8 95.5 1.11 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 40.6 40.6 1.11 2.60s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ì           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 40.8 95.3 1.11 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4.7 45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            | -                                                 |                                        | 2.00<br>2.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                                                            |                                                   |                                        |                |
| 1(305 111 1 71.5 72.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            | _                                                 |                                        |                |
| 10304 ET1 1 03.4 01.7 .45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | غان.                                   | 304 ST1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 63.4                                                       | ü7                                                | .43                                    | • 54           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 03.4 01.07 .43 .24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 cl.4 42.4 .70 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 cl.4 42.4 .70 1.40<br>1 co.5 43.5 .02 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 62.4 42.7 65 4.60<br>1 62.4 46.4 670 1.40<br>1 60.5 93.5 602 1.64<br>1 67.4 46.4 670 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī           |                                                            | 67.5                                              |                                        |                |
| 10205 ETC 1 04.5 67.5 .47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 07.4 92.4 070 1.40 1 07.4 92.4 070 1.40 1 07.5 93.5 002 1.004 1 07.4 92.4 070 1.40 1 07.0 94.1 000 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | _1×0>_                                                     | 2445                                              |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 60-9 41-7 600 1000 1000 1000 1000 1000 1000 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 64.5                                                       | 94.5                                              | . 43                                   |                |
| 10204 <u>DIC</u> 1 27.5 54.5 .23 10203 STC 1 64.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 60.9 93.7 .65 1.06 1 67.4 94.4 .70 1.40 1 60.5 93.5 .62 1.64 1 60.5 93.5 .62 1.64 1 67.4 92.4 .70 1.40 1 67.0 94.1 .65 1.75 1 64.5 67.5 .47 .94 1 79.5 64.5 .23 .47 1 69.5 94.5 .95 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
| 10204 ATC 1 27-5 64-5 -23<br>10203 STC 1 69-5 94-5 -43<br>10202 ETC 1 90-9 95-9 1-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 62.4 92.4 .70 1.40 1 62.4 92.4 .70 1.40 1 60.5 93.5 .62 1.64 1 60.5 93.5 .62 1.64 1 60.5 93.5 .60 1.64 1 60.0 94.1 .60 1.75 1 64.5 69.5 .47 .94 1 29.5 64.5 .23 .47 1 69.9 99.9 1.14 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
| 10204 ATC 1 77.5 64.5 .23 10203 STC 1 67.5 94.5 .45 10202 ETC 1 90.9 95.9 1.14 10201 ATC 1 90.7 95.5 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 60.9 33.7 .65 .600 1 67.4 92.4 .70 1.40 1 60.5 93.5 .62 1.64 1 67.4 92.4 .70 1.40 1 67.4 92.4 .70 1.40 1 67.0 94.1 .65 1.75 1 64.5 69.5 .47 .94 1 79.5 64.5 .23 .47 1 69.9 99.9 1.14 2.60 1 90.9 99.9 1.14 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1          | (0.0                                                       | 43.0                                              | •64                                    | 4.664          |
| 10301 ET1 1 68.5 93.5 .02<br>10300 ET1 1 67.4 96.8 .70<br>10200 BTC 1 69.0 94.1 .66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.<br>10.<br>10.<br>10.<br>10.<br>10. | 301 ET1 300 ET1 200 BTC 205 ETC 204 AIC 203 STC 202 ETC 201 BTC 200 BTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 68.5<br>-27.4<br>-07.0<br>-04.5<br>-74.5<br>-69.5<br>-90.9 | 93.5<br>94.4<br>94.1<br>94.5<br>94.5<br>94.5      | .02<br>.70<br>.60<br>.47<br>.43<br>.43 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same of the sa | 1           |                                                            | _                                                 |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ì           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 03.4 01.87 .45 .54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | بان مه وظم <u>ــــــــ 7 ملهــــ ومنظــــــــــــــــــــــــــــــــــــ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | عاد وظم <u>ـــــــ 7 مل</u> لا وطــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>    |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | عاد وظم <u>ـــــــ 7 مل</u> لا وطــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī           |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | عاده                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī           |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | عاد وظم <u>ـــــــ 7 مل</u> لا وطــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _<br>       |                                                            |                                                   | •                                      | · -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 clos 42.4 .70 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 clos 42.4 .70 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 67.4 42.4 .70 1.46<br>1 68.5 43.5 .02 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 cl.4 42.4 .70 1.46<br>1 cl.4 42.4 .70 1.46<br>1 60.5 43.5 .02 1.64<br>1 67.4 42.4 .70 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                            |                                                   |                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 cl.4 42.4 .70 1.45 1 cl.4 42.4 .70 1.45 1 co.5 43.5 .02 1.c4 1 cl.4 42.4 .70 1.45 1 cl.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                            |                                                   |                                        |                |
| 10205 ETC 1 04.5 67.0 .47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 cl.4 4c.4 .70 1.45 1 cl.4 4c.4 .70 1.45 1 co.5 4c.5 .cc 1.cc 1 cl.4 4c.4 .70 1.45 1 co.5 4c.4 .70 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107                                    | 204 <u>nIC</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u></u>                                                    | 24.5                                              | 43                                     | 41             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 01.4 92.4 070 1.45 1 01.4 92.4 070 1.45 1 00.5 93.5 002 1.04 1 01.4 92.4 070 1.45 1 09.0 94.1 00 1.75 1 04.5 09.5 09.7 094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ١           |                                                            |                                                   |                                        |                |
| 10204 416 1 2405 6405 6405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                    | 203 STC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ì           |                                                            | 94.5                                              | . 43                                   | 4.0            |
| 10204 416 1 2405 6405 6405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 90.9                                                       | 45.4                                              |                                        | 4046           |
| 10204 <u>DIC</u> 1 27.5 54.5 .23 10203 STC 1 64.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 60.9 41.7 65 4.00  1 67.4 96.4 70 1.45  1 60.5 93.5 .06 1.64  1 67.4 96.8 .70 1.45  1 67.0 94.1 .60 1.75  1 64.5 67.5 .47 .94  1 74.5 64.5 .23 .47  1 67.5 94.5 .95 .95 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī           |                                                            |                                                   |                                        |                |
| 10204 ATC 1 27-5 64-5 -23<br>10203 STC 1 69-5 94-5 -43<br>10202 ETC 1 90-9 95-9 1-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·····       |                                                            |                                                   |                                        |                |
| 10204 ATC 1 77.5 64.5 .23 10203 STC 1 67.5 94.5 .45 10202 ETC 1 90.9 95.9 1.14 10201 ATC 1 90.7 95.5 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |                                                            | _                                                 |                                        |                |
| 10204 ATC 1 74.5 64.5 .23 10203 STC 1 64.5 .45 10202 ETC 1 90.9 95.9 1.14 10201 ATC 1 90.7 95.8 1.11 10200 BTC 1 71.4 74.9 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,                                    | TOO FICH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 🛦         | 60.0                                                       | 73.0                                              | • 62                                   | 1.0            |

# APPENDIX N

Dosimeter and Calculated Equivalent Sound Level Data Comparisons

Appendix N-1

Differences between calculated ESL data and dosimeter data on an individual basis, with no averaging of measured noise levels.

| Ship No.           | Rate | Leq<br>Calc. | Leq<br>Dos. | Difference DosCalc. |     |
|--------------------|------|--------------|-------------|---------------------|-----|
| FF-1094            | BTFR | 91.0         | 97.9        | 6.9                 |     |
| USS Pharris        | BTFR | 88.5         | 85.1        | -3.4                |     |
|                    | BT3  | 88.8         | 91.6        | 2.8                 |     |
|                    | BTFN | 87.9         | 96.3        | 8.4                 |     |
|                    | BT2  | 85.1         | 87.1        | 2.0                 |     |
|                    |      |              |             | Mean                | 3.3 |
|                    |      |              |             | S.D.                | 4.6 |
| FF-1085            | BT3  | 84.3         | 85.5        | 1.2                 |     |
| USS Beary          | BT3  | 79.7         | 84.1        | 4.4                 |     |
|                    | BT1  | 87.9         | 86.1        | -1.8                |     |
|                    | BTFA | 72.0         | 84.3        | 12.3                |     |
|                    | BT3  | 82.9         | 80.8        | -2.1                |     |
|                    | BT3  | 90.6         | 89.7        | -0.9                |     |
|                    |      |              |             | Mean                | 2.2 |
|                    |      |              |             | S.D.                | 5.5 |
| <b>FF-1</b> 092    | MMFN | 83.0         | 94.8        | 11.8                |     |
| USS Thomas C. Hart | MMFR | 87.3         | 92.4        | 5.1                 |     |
|                    | BTFN | 86.0         | 98.3        | 12.3                |     |
|                    | BT3  | 84.9         | 82.8        | -2.1                |     |
|                    | mmfa | 93.5         | 88.2        | <b>-5.</b> 0        |     |
|                    | mmpn | 73.5         | 91.1        | 17.6                |     |
|                    |      |              |             | Mean                | 6.6 |
|                    |      |              |             | S.D.                | 8.9 |
| FF-1081            | ммз  | 82.3         | 88.1        | 5.8                 |     |
| USS Aylwin         | MM3  | 85.6         | 87.6        | 2.0                 |     |
|                    | MM3  | 88.5         | 88.4        | -0.1                |     |
|                    | BT3  | 85.6         | 92.0        | 6.4                 |     |
|                    | BT3  | 89.4         | 90.4        | 1.0                 |     |
|                    | BT3  | 86.0         | 91.1        | 5.1                 |     |
|                    |      |              |             | Mean                | 3.4 |
|                    |      |              |             | S.D.                | 2.7 |

Appendix N-1 (cont)

| Ship No.       | Rate | Leq<br>Calc. | Leq<br><u>Dos.</u> | Difference DosCalc. |      |
|----------------|------|--------------|--------------------|---------------------|------|
| FF-1097        | MMFA | 87.6         | 81.3               | -6.3                |      |
| USS Moinester  | BT3  | 92.2         | 90.0               | -2.2                |      |
|                | BT3  | 81.1         | 93.0               | 11.9                |      |
|                | FN   | 84.8         | 95.0               | 10.2                |      |
|                |      |              |                    | Mean                | 3.4  |
|                |      |              |                    | S.D.                | 9.0  |
| <b>FF-1075</b> | BT2  | 68.0         | 87.2               | 19.2                |      |
| USS Trippe     | BT3  | 68.0         | 86.6               | 18.6                |      |
|                | BTFA | 90.5         | 84.8               | -5.7                |      |
|                | BTFN | 90.9         | 91.3               | 10.4                |      |
|                | BT2  | 87.5         | 78.0               | -9.5                |      |
|                | BTFN | 68.0         | 87.5               | 16.8                |      |
|                | BT3  | 88.0         | 87.5               | 0.5                 |      |
|                | MM3  | 90.9         | 94.7               | 3.8                 |      |
|                | mmfn | 89.6         | 90.6               | 1.0                 |      |
|                | mmfn | 84.0         | 84.0               | 0.0                 |      |
|                |      |              |                    | Mean                | 4.5  |
|                |      |              |                    | S.D.                | 10.2 |
|                |      |              |                    | Overall Mean        | 4.0  |
|                |      | Overa        | ill Standa         | ard Deviation       | 7.3  |

Appendix N-2

Differences between calculated ESL data and dosimeter data on an individual basis, with sub area averaging of measured noise levels.

| Ship No.           | Rate | Leq<br>Calc. | Leq<br>Dos. | Difference DosCalc. |      |
|--------------------|------|--------------|-------------|---------------------|------|
| FF-1094            | BTFR | 90.1         | 97.9        | 7.8                 |      |
| USS Pharris        | BTFR | 90.2         | 85.1        | -5.1                |      |
|                    | BT3  | 89.9         | 91.6        | 1.7                 |      |
|                    | BTFN | 89.9         | 96.3        | 6.4                 |      |
| •                  | BT2  | 90.2         | 87.1        | -3.1                |      |
|                    |      |              |             | Mean                | 1.5  |
|                    |      |              |             | S.D.                | 5.7  |
| FF-1085            | вт3  | 94.9         | 85.5        | -9.4                |      |
| USS Beary          | BT3  | 97.6         | 84.1        | -13.5               |      |
|                    | BT1  | 90.6         | 86.1        | -4.5                |      |
|                    | BTFA | 90.8         | 84.3        | -6.5                |      |
|                    | BT3  | 85.2         | 80.8        | -4.4                |      |
|                    | BT3  | 92.2         | 89.7        | -2.5                |      |
|                    |      |              |             | Mean                | -6.8 |
|                    |      |              |             | S.D.                | 4.0  |
| FF-1092            | MMFN | 83.0         | 94.8        | 11.8                |      |
| USS Thomas C. Hart | MMFR | 87.3         | 92.4        | 5.1                 |      |
|                    | BTFN | 85.2         | 98.3        | 13.1                |      |
|                    | BT3  | 85.9         | 82.8        | -3.1                |      |
|                    | MMFA | 93.4         | 88.2        | -5.2                |      |
|                    | mmfn | 89.1         | 91.1        | 2.0                 |      |
|                    |      |              |             | Mean                | 3.9  |
|                    |      |              |             | S.D.                | 7.5  |
| FF-1081            | MM3  | 87.3         | 88.1        | 0.8                 |      |
| USS Aylwin         | MM3  | 81.7         | 87.6        | 5.9                 |      |
| •                  | MM3  | 86.7         | 88.4        | 1.7                 |      |
|                    | BT3  | 90.4         | 92.0        | 1.6                 |      |
|                    | BT3  | 90.3         | 90.4        | . 0.1               |      |
|                    | BT3  | 92.1         | 91.1        | -1.0                |      |
|                    |      |              |             | Mean                | 1.5  |
|                    |      |              |             | S.D.                | 2.4  |

Overall Standard Deviation

Appendix N-2 (cont)

| Ship No.      | Rate | Leq<br>Calc. | Leq<br>Dos. | Difference DosCalc. |      |
|---------------|------|--------------|-------------|---------------------|------|
| FF-1097       | MMFA | 85.6         | 81.3        | -4.3                |      |
| USS Moinester | BT3  | 91.5         | 90.0        | -1.5                |      |
|               | BT3  | 91.5         | 93.0        | 1.5                 |      |
|               | fn   | 85.0         | 95.0        | 10.0                |      |
|               |      |              |             | Mean                | 1.4  |
|               |      |              |             | S.D.                | 6.2  |
| FF-1075       | BT2  | 85.5         | 87.2        | 1.7                 | ٠.   |
| USS Trippe    | BT3  | 90.5         | 86.6        | -3.9                |      |
|               | BTFA | 90.5         | 84.8        | <b>-5.7</b>         |      |
|               | BTFN | 88.1         | 91.3        | 3.2                 |      |
|               | BT2  | 87.5         | 78.0        | -9.5                |      |
|               | BTFN | 87.5         | 84.8        | -2.7                |      |
|               | BT3  | 85.1         | 87.5        | 2.4                 |      |
|               | MM3  | 89.7         | 94.7        | 5.0                 |      |
| :             | MMFN | 88.3         | 90.6        | 2.3                 |      |
|               | mmfn | 87.1         | 84.0        | -3.1                |      |
|               |      |              |             | Mean                | -1.0 |
|               |      |              |             | S.D.                | 4.6  |
|               |      |              |             | Overall Mean        | -0.1 |

Appendix N-3

Differences between calculated ESL data and dosimeter data on an individual basis, with general area averaging of measured noise levels.

| Ship No.           | Rate | Leq<br>Calc. | Leq<br>Dos. | Difference DosCalc. |      |
|--------------------|------|--------------|-------------|---------------------|------|
| FF-1094            | BTFR | 90.1         | 97.9        | 7.8                 |      |
| USS Pharris        | BTFR | 90.1         | 85.1        | -5.0                |      |
|                    | BT3  | 90.1         | 91.6        | 1.5                 |      |
|                    | BTFN | 90.1         | 96.3        | 6.2                 |      |
|                    | BT2  | 90.1         | 87.1        | -3.0                |      |
|                    |      |              |             | Mean                | 1.5  |
|                    |      |              |             | S.D.                | 5.6  |
| FF-1085            | вт3  | 95.0         | 85.5        | -9.5                |      |
| USS Beary          | BT3  | 97.7         | 84.1        | -13.6               |      |
|                    | BT1  | 92.2         | 86.1        | -6.1                |      |
|                    | BTFA | 90.8         | 84.3        | -6.5                |      |
|                    | BT3  | 86.4         | 80.8        | <b>-</b> 5.6        |      |
|                    | BT3  | 92.9         | 89.7        | -3.2                |      |
|                    |      |              |             | Mean                | -7.4 |
|                    |      |              |             | S.D.                | 3.6  |
| FF-1092            | MMFN | 83.0         | 94.8        | 11.8                |      |
| USS Thomas C. Hart | MMFR | 88.9         | 92.4        | 3.5                 |      |
|                    | BTFN | 85.1         | 98.3        | 13.2                |      |
|                    | BT3  | 86.0         | 82.8        | -3.2                |      |
|                    | mmfa | 95.1         | 88.2        | -6.9                |      |
|                    | mmfn | 89.7         | 91.1        | 1.4                 |      |
|                    |      |              |             | Mean                | 3.3  |
|                    |      |              |             | S.D.                | 8.0  |
| FF-1081            | MM3  | 87.3         | 88.1        | 0.8                 |      |
| USS Aylwin         | MM3  | 83.9         | 87.6        | 3.7                 |      |
|                    | MM3  | 88.9         | 88.4        | -0.5                |      |
|                    | BT3  | 91.7         | 92.0        | 0.3                 |      |
|                    | BT3  | 89.1         | 90.4        | 1.3                 |      |
|                    | BT3  | 90.9         | 91.1        | 0.2                 |      |
|                    |      |              |             | Mean                | 1.0  |
|                    |      |              |             | S.D.                | 1.5  |

Appendix N-3 (cont)

| Chan No       | Daha | Leq   | Leq        | Difference    |      |
|---------------|------|-------|------------|---------------|------|
| Ship No.      | Rate | Calc. | Dos.       | DosCalc.      |      |
| FF-1097       | MMFA | 85.8  | 81.3       | -4.5          |      |
| USS Moinester | BT3  | 91.8  | 90.0       | -1.8          |      |
|               | BT3  | 91.8  | 93.0       | 1.2           |      |
|               | FN   | 86.9  | 95.0       | 8.1           |      |
|               |      |       |            | Mean          | 0.8  |
|               |      |       |            | S.D.          | 5.4  |
| FF-1075       | BT2  | 85.5  | 87.2       | 1.7           |      |
| USS Trippe    | BT3  | 90.5  | 86.6       | <b>-</b> 3•9  |      |
|               | BTFA | 90.5  | 84.8       | -5.7          |      |
|               | BTFN | 90.5  | 91.3       | 0.8           |      |
|               | BT2  | 87.5  | 78.0       | <b>-9.5</b>   |      |
|               | BTFN | 87.5  | 84.8       | -2.7          |      |
|               | BT3  | 87.5  | 87.5       | 0.0           |      |
|               | MM3  | 91.2  | 94.7       | 3.5           |      |
|               | MMFN | 89.9  | 90.6       | 0.7           |      |
|               | MMFN | 85.6  | 84.0       | -1.6          |      |
|               |      |       |            | Mean          | -1.9 |
|               |      |       |            | S.D.          | 4.1  |
|               |      |       |            | Overall Mean  | -0.7 |
|               |      | Over  | all Standa | ard Deviation | 5.8  |

Appendix N-4

Differences between calculated ESL data and dosimeter data on a grade average and individual ship basis with no averaging of measured noise levels.

| Ship No.                      | Rate                                      | Leq<br>Calc.                                 | Leq<br>Dos.                                  | Difference<br>DosCalc.                                      |             |
|-------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------|
| FF-1094<br>USS Pharris        | BTFR<br>BT3<br>BTFN<br>BT2                | 89.3<br>87.1<br>88.6<br>83.4                 | 9.15<br>91.6<br>96.3<br>87.1                 | 2.2<br>4.5<br>7.7<br>3.7<br>Mean<br>S.D.                    | 4.5<br>2.3  |
| FF-1085<br>USS Beary          | BT3<br>BT1<br>BTFA                        | 84.9<br>87.0<br>***                          | 85.0<br>86.1<br>84.3                         | 0.1<br>-0.9<br>***<br>Mean<br>S.D.                          | -0.4<br>0.7 |
| FF-1092<br>USS Thomas C. Hart | MMFN<br>MMFR<br>BTFN<br>BT3<br>MMFA       | 82.1<br>87.3<br>78.0<br>84.2<br>93.5         | 93.0<br>92.4<br>98.3<br>82.8<br>88.2         | 10.9<br>5.1<br>20.0<br>-5.7<br>-5.3<br>Mean<br>S.D.         | 5.0<br>11.0 |
| FF-1081<br>USS Aylwin         | MM3<br>BT3                                | 85.4<br>87.0                                 | 88.0<br>91.2                                 | 2.6<br>4.2<br>Mean<br>S.D.                                  | 3.4<br>1.1  |
| FF-1097<br>USS Moinester      | MMFA<br>BT3<br>FN                         | 85.4<br>90.5<br>84.5                         | 81.3<br>91.5<br>95.0                         | -4.1<br>1.0<br>10.5<br>Mean<br>S.D.                         | 2.5<br>7.4  |
| FF-1075<br>USS Trippe         | BT2<br>BT3<br>BTFA<br>BTFN<br>MM3<br>MMFN | 87.5<br>88.0<br>90.5<br>90.9<br>90.9<br>87.8 | 82.6<br>87.0<br>84.8<br>88.0<br>94.7<br>87.3 | -4.9<br>-1.0<br>-5.7<br>-2.9<br>3.8<br>-0.5<br>Mean<br>S.D. | -1.9<br>3.5 |
|                               |                                           | Overal                                       |                                              | verall Mean                                                 | 2.1<br>6.3  |

Appendix N-5

Differences between calculated ESL data and dosimeter data on a grade average and individual ship basis with sub area averaging of measured noise levels.

| Ship No.                      | Rate                                      | Leq<br>Calc.                                 | Leq<br>Dos.                          | Difference DosCalc.                                        |             |
|-------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------------------------|-------------|
| FF-1094<br>USS Pharris        | BTFR<br>BT3<br>BTFN<br>BT2                | 90.2<br>88.8<br>89.8<br>90.0                 | 91.5<br>91.6<br>96.3<br>87.1         | 1.3<br>2.0<br>6.5<br>-2.9<br>Mean<br>S.D.                  | 1.7<br>3.8  |
| FF-1085<br>USS Beary          | BT3<br>BT1<br>BTFA                        | 91.6<br>88.9<br>90.8                         | 85.0<br>86.1<br>84.3                 | -6.6<br>-2.8<br>-6.5<br>Mean<br>S.D.                       | -5.3<br>2.2 |
| FF-1092<br>USS Thomas C. Hart | MMFN<br>MMFR<br>BTFN<br>BT3<br>MMFA       | 87.5<br>87.3<br>80.0<br>85.2<br>93.4         | 93.0<br>92.4<br>98.3<br>82.8<br>88.2 | 5.5<br>5.1<br>18.3<br>-2.4<br>-5.2<br>Mean<br>S.D.         | 4.3<br>9.1  |
| FF-1081<br>USS Aylwin         | MM3<br>BT3                                | 85.3<br>90.9                                 | 88.0<br>91.2                         | 2.7<br>0.3<br>Mean<br>S.D.                                 | 1.5<br>1.7  |
| FF-1097<br>USS Moinester      | MMFA<br>BT3<br>FN                         | 83.1<br>88.8<br>84.7                         | 81.3<br>91.5<br>95.0                 | -1.8<br>2.7<br>10.3<br>Mean<br>S.D.                        | 3.7<br>6.1  |
| FF-1075<br>USS Trippe         | BT2<br>BT3<br>BTFA<br>BTFN<br>MM3<br>MMFN | 87.8<br>87.8<br>90.5<br>87.8<br>89.7<br>88.4 | 82.6<br>87.0<br>84.8<br>88.0<br>94.7 | -5.2<br>-0.8<br>-5.7<br>0.2<br>5.0<br>-1.1<br>Mean<br>S.D. | -1.3<br>3.9 |
|                               |                                           | Overal                                       |                                      | verall Mean<br>d Deviation                                 | .8<br>5.9   |

Appendix N-6

Differences between calculated ESL data and dosimeter data on a grade average and individual ship basis with general area averaging of measured noise levels.

| Ship No.                      | Rate                                      | Leq<br>Calc.                                 | Leq<br>Dos.                                  | Difference<br>DosCalc.                                      |                     |
|-------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------|
| FF-1094<br>USS Pharris        | BTFR<br>BT3<br>BTFN<br>BT2                | 90.1<br>88.8<br>89.8<br>90.0                 | 91.5<br>91.6<br>96.3<br>87.1                 | 1.4<br>2.8<br>6.5<br>-2.9<br>Mean<br>S.D.                   | 2.0<br>3.9          |
| FF-1085<br>USS Beary          | BT3<br>BT1<br>BTFA                        | 92.3<br>89.7<br>90.8                         | 85.0<br>86.1<br>84.3                         | -7.3<br>-3.6<br>-6.5<br>Mean<br>S.D.                        | <b>-</b> 5.8<br>2.0 |
| FF-1092<br>USS Thomas C. Hart | MMFN<br>MMFR<br>BTFN<br>BT3<br>MMFA       | 88.1<br>88.9<br>80.0<br>85.2<br>95.1         | 93.0<br>92.4<br>98.3<br>82.8<br>88.2         | 4.9<br>3.5<br>18.3<br>-2.4<br>-6.9<br>Mean<br>S.D.          | 3.5<br>9.5          |
| FF-1081<br>USS Aylwin         | MM3<br>BT3                                | 86.8<br>90.6                                 | 88.0<br>91.2                                 | 1.2<br>0.6<br>Mean<br>S.D.                                  | 0.9<br>0.4          |
| FF-1097<br>USS Moinester      | MMFA<br>BT3<br>FN                         | 83.3<br>89.1<br>86.0                         | 81.3<br>91.5<br>95.0                         | -2.0<br>2.4<br>9.0<br>Mean<br>S.D.                          | 3.1<br>5.5          |
| FF-1075<br>USS Trippe         | BT2<br>BT3<br>BTFA<br>BTFN<br>MM3<br>MMFN | 87.8<br>89.0<br>90.5<br>89.0<br>91.2<br>88.4 | 82.6<br>87.0<br>84.8<br>88.0<br>94.7<br>87.3 | -5.2<br>-2.0<br>-5.7<br>-1.0<br>3.5<br>-1.1<br>Mean<br>S.D. | -1.9<br>3.4         |
|                               |                                           | Overa]                                       |                                              | Overall Mean                                                | 0.3<br>5.9          |

Appendix N-7

Differences between calculated ESL data and dosimeter data on a grade average (over all ships) basis with no area averaging of measured noise levels.

| Ship No.  | Rate | Leq<br><u>Calc.</u> | Leq<br>Dos. | Difference DosCalc. |
|-----------|------|---------------------|-------------|---------------------|
| All Ships | BT1  | 79.5                | 86.1        | 6.6                 |
| -         | BT2  | 76.6                | 87.3        | 10.7                |
|           | BT3  | 82.0                | 88.1        | 6.1                 |
|           | BTFA | 85.5                | 84.6        | -0.9                |
|           | BTFN | 85.5                | 92.7        | 7.2                 |
|           | BTFR | 86.7                | 91.5        | 4.8                 |
|           | MM3  | 83.5                | 89.7        | 6.2                 |
|           | MMFA | 85.6                | 84.7        | -0.9                |
|           | MMFN | 83.7                | 90.1        | 6.4                 |
|           | MMFR | 88.7                | 92.4        | 3.7                 |
|           | FN   | 81.8                | 95.0        | 13.2                |

Overall Mean 5.7
Overall Standard Deviation 4.2

Appendix N-8

Differences between calculated ESL data and dosimeter data on a grade average (over all ships) basis with sub area averaging of measured noise levels.

| Ship No.  | Rate | Leq<br>Calc. | Leq<br>Dos. | Difference DosCalc. |
|-----------|------|--------------|-------------|---------------------|
| All Ships | BT1  | 87.4         | 86.1        | -1.3                |
|           | BT2  | 89.8         | 87.3        | -2.5                |
|           | BT3  | 89.0         | 88.1        | -0.9                |
|           | BTFA | 88.2         | 84.6        | -3.6                |
|           | BTFN | 87.8         | 92.7        | 4.9                 |
|           | BTFR | 88.3         | 91.5        | 3.2                 |
|           | MM3  | 86.2         | 89.7        | 3.5                 |
|           | MMFA | 85.2         | 84.7        | -0.5                |
|           | MMFN | 85.5         | 90.1        | 4.6                 |
|           | MMFR | 88.7         | 92.4        | 3.7                 |
|           | FN   | 82.9         | 95.0        | 12.1                |

Overall Mean 2.1
Overall Standard Deviation 4.5

Appendix N-9

Differences between calculated ESL data and dosimeter data on a grade average (over all ships) basis with general area averaging of measured noise levels.

| Ship No.  | Rate | Leq<br>Calc. | Leq<br>Dos. | Difference DosCalc. |
|-----------|------|--------------|-------------|---------------------|
|           |      |              |             |                     |
| All Ships | BT1  | 87.6         | 86.1        | -1.5                |
| •         | BT2  | 89.5         | 87.3        | -2.2                |
|           | BT3  | 89.3         | 88.1        | -1.2                |
|           | BTFA | 87.7         | 84.6        | -3.1                |
|           | BTFN | 88.3         | 92.7        | 4.4                 |
|           | BTFR | 87.5         | 91.5        | 4.0                 |
|           | MM3  | 86.9         | 89.7        | 2.8                 |
|           | MMFA | 86.1         | 84.7        | -1.4                |
|           | MMFN | 86.0         | 90.1        | 4.1                 |
|           | MMFR | 89.2         | 92.4        | 3.2                 |
|           | FN   | 83.3         | 95.0        | 11.7                |

Overall Mean 1.9
Overall Standard Deviation 4.3

# DATE ILME